ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-04
    Description: NASA Marshall Space Flight Center personnel presented a paper on the status of MSFC computational fluid dynamics application and validation activities. Subjects discussed included the Space Shuttle Main Engine studies, unsteady multistage turbine loads, fuel pump discharge volutes, and injector LOX inlet results based on fundamental flows, subcomponents, and interactive components/systems.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, 2nd NASA CFD Validation Workshop; p 70-99
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-10-14
    Description: A preliminary assessment is made of two NASA-developed unsteady turbine stage computer codes. The methodology and previous partial validation of the codes are briefly outlined. Application of these codes to a Space Shuttle main engine turbine for two sets of operating conditions is then described. Steady and unsteady, two and three-dimensional results are presented, compared, and discussed. These results include time-mean and instantaneous airfoil pressure distributions and pressure fluctuations, streamlines on the airfoil surfaces and endwalls, and relative total pressure contours at different axial locations in the rotor passage. Although not available at the time of this writing, experimental data for one of the operating conditions simulated is forthcoming and will be used to assess the accuracy of the unsteady, as well as, the steady predictions presented. Issues related to code usage and resource requirements of the two codes are also discussed.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AGARD, Unsteady Aerodynamic Phenomena in Turbomachines; 15 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: Journal of Propulsion and Power (ISSN 0748-4658); 6; 598-611
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-29
    Description: The topics are presented in viewgraph form and include the following: (1) Space Shuttle Main Engine (SSME) technology test bed (TTB) history; (2) TTB objectives; (3) TTB major accomplishments; (4) TTB contributions to SSME; (5) major impacts of 3001 testing; (6) some challenges to computational fluid dynamics (CFD); (7) the high pressure fuel turbopump (HPFTP); and (8) 3001 lessons learned in design and operations.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Goddard Space Flight Center, Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, Part 1; p 1-26
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: A numerical study of the aerodynamic and thermal environment associated with axial turbine stages is presented. Computations were performed using a modification of the unsteady NASA Ames viscous code, ROTOR1, and an improved version of the NASA Lewis steady inviscid cascade system MERIDL-TSONIC coupled with boundary layer codes BLAYER and STAN5. Two different turbine stages were analyzed: the first stage of the United Technologies Research Center Large Scale Rotating Rig (LSRR) and the first stage of the Space Shuttle Main Engine (SSME) high pressure fuel turbopump turbine. The time-averaged airfoil midspan pressure and heat transfer profiles were predicted for numerous thermal boundary conditions including adiabatic wall, prescribed surface temperature, and prescribed heat flux. Computed solutions are compared with each other and with experimental data in the case of the LSRR calculations. Modified ROTOR1 predictions of unsteady pressure envelopes and instantaneous contour plots are also presented for the SSME geometry. Relative merits of the two computational approaches are discussed.
    Keywords: AERODYNAMICS
    Type: NASA, Ames Research Center, NASA Computational Fluid Dynamics Conference. Volume 2: Sessions 7-12; p 217-229
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The Advanced Launch System (ALS) program selection process for a space transportation main engine (STME) power cycle is described in terms of the methodology employed. Low cost, robustness, and high reliability are the primary parameters for engine choice, suggesting simplicity of design and efficient fabrication methods as the crucial characteristics. An evaluation methodology is developed based on the Pugh (1981) process and the King (1989) matrices. The cycle configurations considered are the gas generator (GG), the closed expander, and the open expander. The cycle assessment team determined that the GG cycle is favored by most cycle discriminators, based on an assessment of the characteristics in terms of ALS goals. The lower development risk of the GG-cycle STME is consistent with the goals of the ALS program in terms of reliability and cost efficiency.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 91-2035
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The computational study reported here is motivated by a Space Shuttle main engine hardware problem detected in post-flight and post-test inspections. Of interest are the potential for hot gas ingestion into the joint (G15) at the main combustion chamber-to-nozzle interface and the effect of particular goemetric nonuniformities on that gas ingestion. The flowfield in the G15 region involves supersonic flow past a rounded forward facing step preceded by a deep narrow cavity. This paper describes the physical problem associated with joint G15 and computational investigations of the G15 aerothermal environment. The associated flowfield was simulated in two and three space dimensions using the United Solutions Algorithm (USA) computational fluid dynamics code series. A benchmark calculation of experimentally measured supersonic flow over of a square cavity was performed to demonstrate the accuracy of the USA code in analyzing flows similar to the G15 computational flowfield. The G15 results demonstrate the mechanism for hot gas ingestion into the joint and reveal the sensitivity to salient geometric nonuniformities.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 90-2359
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Various aspects of computational fluid dynamics (CFD), as it relates to design applications in rocket propulsion activities from the government perspective, are discussed. Specific examples are given that demonstrate the application of CFD to support hardware development activities, such as Space Shuttle Main Engine flight issues, and the associated teaming strategy used for solving such problems. In addition, select examples that delineate the motivation, methods of approach, goals and key milestones for several space flight progams are cited. An approach is described toward applying CFD in the design environment from the government perspective. A discussion of benchmark validation, advanced technology hardware concepts, accomplishments, needs, future applications, and near-term expectations from the flight-center perspective is presented.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: AIAA PAPER 90-1825
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: A numerical study of the aerodynamic and thermal environment associated with axial turbine stages is presented. Computations were performed using a modification of the unsteady viscous code, ROTORI, and an improved version of the steady inviscid cascade system, MERIDL-TSONIC, coupled with boundary layer codes, BLAYER and STAN5. Two different turbine stages were analyzed: the first stage of the United Technologies Research Center Large Scale Rotating Rig (LSRR) and the first stage of the Space Shuttle Main Engine (SSME) high pressure fuel turbopump turbine. The time-averaged airfoil midspan pressure and heat transfer profiles were predicted for numerous thermal boundary conditions including adiabatic wall, prescribed surface temperature, and prescribed heat flux. Computed solutions are compared with each other and with experimental data in the case of the LSRR calculations. Modified ROTORI predictions of unsteady pressure envelopes and instantaneous contour plots are also presented. Relative merits of the two computational approaches are discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ASME PAPER 89-GT-89
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Test results of a highly instrumented Space Shuttle Main Engine (SSME) are presented. The instrumented engine, when combined with instrumented high pressure turbopumps, contains over 750 special measurements, including flowrates, pressures, temperatures, and strains. To date, two different test series, accounting for a total of sixteen tests and 1,667 seconds, have been conducted with this engine. The first series, which utilized instrumented turbopumps, characterized the internal operating environment of the SSME for a variety of operating conditions. The second series provided system-level validation of a high pressure liquid oxygen turbopump that had been retrofitted with a fluid-film bearing in place of the usual pump-end ball bearings. Major findings from these two test series are highlighted in this paper. In addition, comparisons are made between model predictions and measured test data.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 92-3452
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...