ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Most of the baryons in galaxy clusters reside between the galaxies in a hot, tenuous gas. The densest gas in their centres should cool and accrete onto giant central galaxies at rates of 10–1,000 solar masses per year. No viable repository for this gas, such as clouds or new stars, ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-03-29
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-14
    Description: The gas-phase metallicity distribution has been analysed for the hot atmospheres of 29 galaxy clusters using Chandra X-ray Observatory observations. All host brightest cluster galaxies (BCGs) with X-ray cavity systems produced by radio AGN. We find high elemental abundances projected preferentially along the cavities of 16 clusters. The metal-rich plasma was apparently lifted out of the BCGs with the rising X-ray cavities (bubbles) to altitudes between twenty and several hundred kiloparsecs. A relationship between the maximum projected altitude of the uplifted gas (the ‘iron radius’) and jet power is found with the form $R_{\rm Fe} \propto P_{\rm jet}^{0.45}$ . The estimated outflow rates are typically tens of solar masses per year but exceed 100 M yr – 1 in the most powerful AGN. The outflow rates are 10–20 per cent of the cooling rates, and thus alone are unable to offset a cooling inflow. Nevertheless, hot outflows effectively redistribute the cooling gas and may play a significant role at regulating star formation and AGN activity in BCGs and presumably in giant elliptical galaxies. The metallicity distribution overall can be complex, perhaps due to metal-rich gas returning in circulation flows or being blown around in the hot atmospheres. Roughly 15 per cent of the work done by the cavities is expended lifting the metal-enriched gas, implying their nuclear black holes have increased in mass by at least ~10 7 –10 9 M . Finally, we show that hot outflows can account for the broad, gas-phase metallicity distribution compared to the stellar light profiles of BCGs, and we consider a possible connection between hot outflows and cold molecular gas flows discovered in recent Atacama Large Millimeter Array observations.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-09-27
    Description: We present a dynamical analysis of the merging galaxy cluster system Abell 2146 using spectroscopy obtained with the Gemini Multi-Object Spectrograph on the Gemini North telescope. As revealed by the Chandra X-ray Observatory, the system is undergoing a major merger and has a gas structure indicative of a recent first core passage. The system presents two large shock fronts, making it unique amongst these rare systems. The hot gas structure indicates that the merger axis must be close to the plane of the sky and that the two merging clusters are relatively close in mass, from the observation of two shock fronts. Using 63 spectroscopically determined cluster members, we apply various statistical tests to establish the presence of two distinct massive structures. With the caveat that the system has recently undergone a major merger, the virial mass estimate is $M_{\rm vir}= 8.5^{+4.3}_{-4.7} \times 10^{14} \,\mathrm{M}_{{\odot }}$ for the whole system, consistent with the mass determination in a previous study using the Sunyaev–Zel'dovich signal. The newly calculated redshift for the system is z = 0.2323. A two-body dynamical model gives an angle of 13°–19° between the merger axis and the plane of the sky, and a time-scale after first core passage of 0.24–0.28 Gyr.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-27
    Description: We consider the high radio-frequency (15–353 GHz) properties and variability of 35 brightest cluster galaxies (BCGs). These are the most core-dominated sources drawn from a parent sample of more than 700 X-ray selected clusters, thus allowing us to relate our results to the general population. We find that ≥6.0 per cent of our parent sample (≥15.1 per cent if only cool-core clusters are considered) contain a radio source at 150 GHz of at least 3 mJy (1 x 10 23 W Hz –1 at our median redshift of z   0.13). Furthermore, ≥3.4 per cent of the BCGs in our parent sample contain a peaked component (Gigahertz Peaked Spectrum, GPS) in their spectra that peaks above 2 GHz, increasing to ≥8.5 per cent if only cool-core clusters are considered. We see little evidence for strong variability at 15 GHz on short (week–month) time-scales although we see variations greater than 20 per cent at 150 GHz over six-month time frames for 4 of the 23 sources with multi-epoch observations. Much more prevalent is long-term (year–decade time-scale) variability, with average annual amplitude variations greater than 1 per cent at 15 GHz being commonplace. There is a weak trend towards higher variability as the peak of the GPS-like component occurs at higher frequency. We demonstrate the complexity that is seen in the radio spectra of BCGs and discuss the potentially significant implications of these high-peaking components for Sunyaev–Zel‘dovich cluster searches.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-05-31
    Description: Chandra X-ray observations of the nearby brightest cluster galaxy M87 resolve the hot gas structure across the Bondi accretion radius of the central supermassive black hole (SMBH), a measurement possible in only a handful of systems but complicated by the bright nucleus and jet emission. By stacking only short frame-time observations to limit pileup, and after subtracting the nuclear point spread function, we analysed the X-ray gas properties within the Bondi radius at 0.12-0.22 kpc (1.5-2.8 arcsec), depending on the black hole mass. Within 2 kpc radius, we detect two significant temperature components, which are consistent with constant values of 2 and 0.9 keV down to 0.15 kpc radius. No evidence was found for the expected temperature increase within ~ 0.25 kpc due to the influence of the SMBH. Within the Bondi radius, the density profile is consistent with r –1 . The lack of a temperature increase inside the Bondi radius suggests that the hot gas structure is not dictated by the SMBH's potential and, together with the shallow density profile, shows that the classical Bondi rate may not reflect the accretion rate on to the SMBH. If this density profile extends in towards the SMBH, the mass accretion rate on to the SMBH could be at least two orders of magnitude less than the Bondi rate, which agrees with Faraday rotation measurements for M87. We discuss the evidence for outflow from the hot gas and the cold gas disc and for cold feedback, where gas cooling rapidly from the hot atmosphere could feed the cirumnuclear disc and fuel the SMBH. At 0.2 kpc radius, the cooler X-ray temperature component represents ~20 per cent of the total X-ray gas mass and, by losing angular momentum to the hot gas component, could provide a fuel source of cold clouds within the Bondi radius.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-02
    Description: We present ALMA observations of the CO(1–0) and CO(3–2) line emission tracing filaments of cold molecular gas in the central galaxy of the cluster PKS 0745–191. The total molecular gas mass of $4.6\pm 0.3\times 10^{9} {\rm \, M_{{\odot}}}$ , assuming a Galactic X CO factor, is divided roughly equally between three filaments each extending radially 3-5 kpc from the galaxy centre. The emission peak is located in the SE filament ~ 1 arcsec (2 kpc) from the nucleus. The velocities of the molecular clouds in the filaments are low, lying within $\pm 100 {\rm \, km \rm \, s^{-1}}$ of the galaxy's systemic velocity. Their full width at half-maximum (FWHM) are less than $150 {\rm \, km \rm \, s^{-1},}$ which is significantly below the stellar velocity dispersion. Although the molecular mass of each filament is comparable to a rich spiral galaxy, such low velocities show that the filaments are transient and the clouds would disperse on 〈 10 7 yr time-scales unless supported, likely by the indirect effect of magnetic fields. The velocity structure is inconsistent with a merger origin or gravitational free-fall of cooling gas in this massive central galaxy. If the molecular clouds originated in gas cooling even a few kpc from their current locations their velocities would exceed those observed. Instead, the projection of the N and SE filaments underneath X-ray cavities suggests they formed in the updraft behind bubbles buoyantly rising through the cluster atmosphere. Direct uplift of the dense gas by the radio bubbles appears to require an implausibly high coupling efficiency. The filaments are coincident with low temperature X-ray gas, bright optical line emission and dust lanes indicating that the molecular gas could have formed from lifted warmer gas that cooled in situ .
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-27
    Description: We examine the radio properties of the brightest cluster galaxies (BCGs) in a large sample of X-ray selected galaxy clusters comprising the Brightest Cluster Sample (BCS), the extended BCS and ROSAT -ESO Flux Limited X-ray cluster catalogues. We have multifrequency radio observations of the BCG using a variety of data from the Australia Telescope Compact Array, Jansky Very Large Array and Very Long Baseline Array telescopes. The radio spectral energy distributions of these objects are decomposed into a component attributed to on-going accretion by the active galactic nuclei (AGN) that we refer to as ‘the core’, and a more diffuse, ageing component we refer to as the ‘non-core’. These BCGs are matched to previous studies to determine whether they exhibit emission lines (principally Hα), indicative of the presence of a strong cooling cluster core. We consider how the radio properties of the BCGs vary with cluster environmental factors. Line emitting BCGs are shown to generally host more powerful radio sources, exhibiting the presence of a strong, distinguishable core component in about 60 per cent of cases. This core component more strongly correlates with the BCG's [O iii ] 5007 Å line emission. For BCGs in line emitting clusters, the X-ray cavity power correlates with both the extended and core radio emission, suggestive of steady fuelling of the AGN over bubble-rise time-scales in these clusters.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-09
    Description: We present an Integral Field Unit survey of 73 galaxy clusters and groups with the VIsible Multi Object Spectrograph on the Very Large Telescope. We exploit the data to determine the H α gas dynamics on kpc scales to study the feedback processes occurring within the dense cluster cores. We determine the kinematic state of the ionized gas and show that the majority of systems (~2/3) have relatively ordered velocity fields on kpc scales that are similar to the kinematics of rotating discs and are decoupled from the stellar kinematics of the brightest cluster galaxy. The majority of the H α flux (〉50 per cent) is typically associated with these ordered kinematics and most systems show relatively simple morphologies suggesting they have not been disturbed by a recent merger or interaction. Approximately 20 per cent of the sample (13/73) have disturbed morphologies which can typically be attributed to active galactic nuclei activity disrupting the gas. Only one system shows any evidence of an interaction with another cluster member. A spectral analysis of the gas suggests that the ionization of the gas within cluster cores is dominated by non-stellar processes, possibly originating from the intracluster medium itself.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-01
    Description: We present a multiwavelength morphological analysis of star-forming clouds and filaments in the central (50 kpc) regions of 16 low-redshift ( z 〈 0.3) cool core brightest cluster galaxies. New Hubble Space Telescope imaging of far-ultraviolet continuum emission from young (10 Myr), massive (5 M ) stars reveals filamentary and clumpy morphologies, which we quantify by means of structural indices. The FUV data are compared with X-ray, Lyα, narrow-band Hα, broad-band optical/IR, and radio maps, providing a high spatial resolution atlas of star formation locales relative to the ambient hot (~10 7–8 K) and warm ionized (~10 4 K) gas phases, as well as the old stellar population and radio-bright active galactic nucleus (AGN) outflows. Nearly half of the sample possesses kpc-scale filaments that, in projection, extend towards and around radio lobes and/or X-ray cavities. These filaments may have been uplifted by the propagating jet or buoyant X-ray bubble, or may have formed in situ by cloud collapse at the interface of a radio lobe or rapid cooling in a cavity's compressed shell. The morphological diversity of nearly the entire FUV sample is reproduced by recent hydrodynamical simulations in which the AGN powers a self-regulating rain of thermally unstable star-forming clouds that precipitate from the hot atmosphere. In this model, precipitation triggers where the cooling-to-free-fall time ratio is t cool / t ff ~ 10. This condition is roughly met at the maximal projected FUV radius for more than half of our sample, and clustering about this ratio is stronger for sources with higher star formation rates.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...