ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. Glove injuries, both anecdotal and recorded, have been reported during EVA training and flight persistently through NASA's history regardless of mission or glove model. Theories as to causation such as glove-hand fit are common but often lacking in supporting evidence. Previous statistical analysis has evaluated onycholysis in the context of crew anthropometry only (Opperman et al 2010). The purpose of this study was to analyze all injuries (as documented in the medical records) and available risk factor variables with the goal to determine engineering and operational controls that may reduce hand injuries due to the EVA glove in the future. A literature review and data mining study were conducted between 2012 and 2014. This study included 179 US NASA crew who trained or completed an EVA between 1981 and 2010 (crossing both Shuttle and ISS eras) and wore either the 4000 Series or Phase VI glove during Extravehicular Mobility Unit (EMU) spacesuit EVA training and flight. All injuries recorded in medical records were analyzed in their association to candidate risk factor variables. Those risk factor variables included demographic characteristics, hand anthropometry, glove fit characteristics, and training/EVA characteristics. Utilizing literature, medical records and anecdotal causation comments recorded in crewmember injury data, investigators were able to identify several risk factors associated with increased risk of glove related injuries. Prime among them were smaller hand anthropometry, duration of individual suited exposures, and improper glove-hand fit as calculated by the difference in the anthropometry middle finger length compared to the baseline EVA glove middle finger length.
    Keywords: Aerospace Medicine; Man/System Technology and Life Support
    Type: JSC-CN-32256 , International Conference on Environmental Systems (ICES); Jul 12, 2015 - Jul 16, 2015; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Field of view has always been a design feature paramount to helmet design, and in particular spacesuit design, where the helmet must provide an adequate field of view for a large range of activities, environments, and body positions. Historically, suited field of view has been evaluated either qualitatively in parallel with design or quantitatively using various test methods and protocols. As such, oftentimes legacy suit field of view information is either ambiguous for lack of supporting data or contradictory to other field of view tests performed with different subjects and test methods. This paper serves to document a new field of view testing method that is more reliable and repeatable than its predecessors. It borrows heavily from standard field of vision tests such as the Goldmann kinetic perimetry test, but is designed specifically for evaluating field of view of a spacesuit helmet. In this test, three suits utilizing three different helmet designs were tested for field of view. Not only do these tests provide more reliable field of view data for legacy and prototype helmet designs, they also provide insight into how helmet design impacts field of view and what this means for the Constellation Project spacesuit helmet, which must meet stringent field of view requirements that are more generous to the crewmember than legacy designs.
    Keywords: Optics
    Type: JSC-CN-19145 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Field of view has always been a design feature paramount to helmet design, and in particular space suit design, where the helmet must provide an adequate field of view for a large range of activities, environments, and body positions. For Project Constellation, a slightly different approach to helmet requirement maturation was utilized; one that was less a direct function of body position and suit pressure and more a function of the mission segment in which the field of view is required. Through taxonimization of various parameters that affect suited FOV, as well as consideration for possible nominal and contingency operations during that mission segment, a reduction process was able to condense the large number of possible outcomes to only six unique field of view angle requirements that still captured all necessary variables without sacrificing fidelity. The specific field of view angles were defined by considering mission segment activities, historical performance of other suits, comparison between similar requirements (pressure visor up versus down, etc.), estimated requirements from other teams for field of view (Orion, Altair, EVA), previous field of view tests, medical data for shirtsleeve field of view performance, and mapping of visual field data to generate 45degree off-axis field of view requirements. Full resolution of several specific field of view angle requirements warranted further work, which consisted of low and medium fidelity field of view testing in the rear entry ISuit and DO27 helmet prototype. This paper serves to document this reduction progress and followup testing employed to write the Constellation requirements for helmet field of view.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals that 58% of total astronaut hand and arm injuries from NBL training between 1993 and 2010 occurred either to the fingernail, MCP, or fingertip. The purpose of this study was to assess the potential of using small sensors to measure force acting on the fingers and hand within pressurized gloves and other variables such as blood perfusion, skin temperature, humidity, fingernail strain, skin moisture, among others. Tasks were performed gloved and ungloved in a pressurizable glove box. The test demonstrated that fingernails saw greater transverse strain levels for tension or compression than for longitudinal strain, even during axial fingertip loading. Blood perfusion peaked and dropped as the finger deformed during finger presses, indicating an initial dispersion and decrease of blood perfusion levels. Force sensitive resistors to force plate comparisons showed similar force curve patterns as fingers were depressed, indicating suitable functionality for future testing. Strategies for proper placement and protection of these sensors for ideal data collection and longevity through the test session were developed and will be implemented going forward for future testing.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-32965 , International Conference on Environmental Systems; Jul 12, 2015 - Jul 16, 2015; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. Glove injuries, both anecdotal and recorded, have been reported during EVA training and flight persistently through NASA's history regardless of mission or glove model. Theories as to causation such as glove-hand fit are common but often lacking in supporting evidence. Previous statistical analysis has evaluated onycholysis in the context of crew anthropometry only. The purpose of this study was to analyze all injuries (as documented in the medical records) and available risk factor variables with the goal to determine engineering and operational controls that may reduce hand injuries due to the EVA glove in the future. A literature review and data mining study were conducted between 2012 and 2014. This study included 179 US NASA crew who trained or completed an EVA between 1981 and 2010 (crossing both Shuttle and ISS eras) and wore either the 4000 Series or Phase VI glove during Extravehicular Mobility Unit (EMU) spacesuit EVA training and flight. All injuries recorded in medical records were analyzed in their association to candidate risk factor variables. Those risk factor variables included demographic characteristics, hand anthropometry, glove fit characteristics, and training/EVA characteristics. Utilizing literature, medical records and anecdotal causation comments recorded in crewmember injury data, investigators were able to identify several risk factors associated with increased risk of glove related injuries. Prime among them were smaller hand anthropometry, duration of individual suited exposures, and improper glove-hand fit as calculated by the difference in the anthropometry middle finger length compared to the baseline EVA glove middle finger length.
    Keywords: Man/System Technology and Life Support; Aerospace Medicine
    Type: JSC-CN-32955 , International Conference on Environmental Systems; Jul 12, 2015 - Jul 16, 2015; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Historically, spacesuit mobility has been characterized by directly measuring both range of motion and joint torque of individual anatomic joints. The work detailed herein aims to improve on this method, which is often prone to uncertainly, lack of repeatability, and a general lack of applicability to real-world functional tasks. Specifically, the goal of this work is to characterize suited mobility performance by directly measuring the metabolic performance of the occupant. Pilot testing was conducted in 2013, employing three subjects performing a range of functional tasks in two different suits prototypes, the Mark III and Z-1. Cursory analysis of the results shows the approach has merit, with consistent performance trends toward one suit over the other. Forward work includes the need to look at more subjects, a refined task set, and another suit in a different mass/mobility regime to validate the approach.
    Keywords: Space Sciences (General)
    Type: JSC-CN-31373 , 2014-ICES-007 , International Conference on Environmental Systems (ICES); Jul 13, 2014 - Jul 17, 2014; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Existing methods for evaluating EVA suit performance and mobility have historically concentrated on isolated joint range of motion and torque. However, these techniques do little to evaluate how well a suited crewmember can actually perform during an EVA. An alternative method of characterizing suited mobility through measurement of metabolic cost to the wearer has been evaluated at Johnson Space Center over the past several years. The most recent study involved six test subjects completing multiple trials of various functional tasks in each of three different space suits; the results indicated it was often possible to discern between different suit designs on the basis of metabolic cost alone. However, other variables may have an effect on real-world suited performance; namely, completion time of the task, the gravity field in which the task is completed, etc. While previous results have analyzed completion time, metabolic cost, and metabolic cost normalized to system mass individually, it is desirable to develop a single metric comprising these (and potentially other) performance metrics. This paper outlines the background upon which this single-score metric is determined to be feasible, and initial efforts to develop such a metric. Forward work includes variable coefficient determination and verification of the metric through repeated testing.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2016-278 , JSC-CN-35526 , International Conference on Environmental Systems; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: NASA Johnson Space Center's Z-series of planetary space suit prototypes is an iterative development platform with a Mars-forward design philosophy, targeting a Mars surface mission in the mid-2030s. The first space suit assembly, called the Z-1, was delivered in 2012. While meeting the project's stated requirements and objectives, the general public's reception primarily focused on the color scheme, which vaguely invoked similarity to a certain animated cartoon character. The public at large has and continues to be exposed to varying space suit design aesthetics from popular culture and low TRL technology maturation efforts such as mechanical counterpressure. The lesson learned was that while the design aesthetic is not important from an engineering perspective, the perception of the public is important for NASA and human spaceflight in general. For the Z-2 space suit, an integrated public outreach strategy was employed to engage, excite and educate the public on the current technology of space suits and NASA's plans moving forward. The keystone of this strategy was a public vote on three different suit cover layer aesthetics, the winner of which would be used as inspiration in fabrication. Other components included social media, university collaboration, and select media appearances, the cumulative result of which, while intangible in its benefit, was ultimately a positive effect in terms of the image of NASA as well as the dissemination of information vital to dispelling public misconceptions.
    Keywords: Social and Information Sciences (General); Man/System Technology and Life Support
    Type: ICES-2016-329 , JSC-CN-35511 , International Conference on Environmental Systems; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: In support of the NASA Constellation Program, a space-suit architecture was envisioned for support of Launch, Entry, Abort, Micro-g EVA, Post Landing crew operations, and under emergency conditions, survival. This space suit architecture is unique in comparison to previous launch, entry, and abort (LEA) suit architectures in that it utilized rigid mobility elements in the scye and the upper arm regions. The suit architecture also employed rigid thigh disconnect elements to allow for quick disconnect functionality above the knee which allowed for commonality of the lower portion of the suit across two suit configurations. This suit architecture was designed to interface with the Orion seat subsystem, which includes seat components, lateral supports, and restraints. Due to this unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic landing events, risks were identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series was developed to evaluate the likelihood and consequences of these potential issues. Testing included use of Anthropomorphic Test Devices (ATDs), Post Mortem Human Subjects (PMHS), and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on detailed results of the testing that has been conducted under this test series thus far.
    Keywords: Aerospace Medicine
    Type: JSC-CN-23194 , International Conference on Environmental Systems; Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The spacesuit assembly has a fascinating and complicated history dating back to the early 1930s. Much has been written on this history from an assembly perspective and, to a lesser extent, a component perspective. However, little has been written or preserved specifically on smaller, lesser-known aspects of pressure suit design. One example of this is the injection patch - a small 2-in.-diameter disk on the leg of the Apollo suit that facilitated a medical injection when pressurized, and the only known implementation of such a feature on a flight suit. Whereas many people are aware this feature existed, very little is known of its origin, design, and use, and the fact that the Apollo flight suit was not the only instance in which such a feature was implemented. This paper serves to tell the story of this seeming "afterthought" of a feature, as well as the design considerations heeded during the initial development of subsequent suits.
    Keywords: Space Transportation and Safety
    Type: JSC-CN-28240 , International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...