ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 8 (1991), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 18 (1994), S. 279-284 
    ISSN: 1432-0789
    Keywords: Fly ash ; Bed ash ; Soil quality ; N mineralization ; N volatilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract There is an increasing need to find a suitable means for disposal of coal combustion byproducts because of the increasing world-wide production of these byproducts. This need has prompted interest in the use of land disposal, but there are concerns that this use may degrade the quality of soil. To determine the influence of coal combustion byproducts on the transformation and fate of soil N and assess the potential impact of land disposal on soil quality, we studied the effects of two combustion byproducts (fly ash and bed ash) applied at rates of 22.5, 45, 90, and 180 Mg ha-1 on mineralization and volatile loss of N from soil. Studies comparing the influence of the byproducts on these processes showed that whereas fly ash had little influence on the fate of soil N, bed ash caused substantial mineralization of organic soil N and volatile loss of this N as NH3. Studies monitoring the pH of soils treated with bed ash showed that soil pH increased immediately after this treatment, with values reaching as high as 12.8. These studies indicated that such extreme alkaline conditions caused chemical degradation and volatile loss of as much as 10% of the organic N in soil, and they provide strong evidence that the improper disposal of bed ash on land can have a substantial negative impact on soil quality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 29 (1999), S. 1-9 
    ISSN: 1432-0789
    Keywords: Key words Ammonia oxidation ; Mechanism-based inhibition ; Ammonia monooxygenase ; Methane oxidation ; Methanotrophs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  In recent years, substantial progress has been made towards understanding the modes of action for the specific inhibition of autotrophic NH3 oxidation. This has included demonstrating that NH3 monooxygenase (AMO) has a broad substrate range for catalytic oxidation, and the inhibitory effects of many compounds are due to competition for the active site. Other compounds, such as acetylenes, are oxidized by the normal catalytic cycle of AMO to highly reactive products which covalently bind the enzyme causing irreversible inhibition. Substantial evidence has shown the important role of Cu in the activity of AMO, and indicated that a large class of compounds containing thiono-S inhibit AMO activity by binding with Cu within the active site. Heterocyclic N compounds form another important class of nitrification inhibitors with little known about their mode of action, although evidence suggests that their inhibitory influence is closely related to the presence of ring N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 30 (1999), S. 173-178 
    ISSN: 1432-0789
    Keywords: Key words Denitrification ; Carbon dioxide production ; Soil gas flux ; Soil gas storage ; Surface emissions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  There has been concern that the measurement of gas emissions from a soil surface may not accurately reflect gas production within the soil profile. But, there have been few direct assessments of the error associated with the use of surface emissions for estimating gas production within soil profiles at different water contents. To determine the influence of air porosity on the distribution of gases within soil profiles, denitrification assays were performed using soil columns incubated with different water contents to provide air porosities of 18%, 13%, and 0% (equivalent to 62%, 73%, and 100% water-filled pore space, respectively). The soil columns were formed by packing sieved soil into cylinders which could be sealed at the top to form a headspace for the measurement of surface emissions of soil gases. Gas-permeable silicone tubing was placed at three depths (4.5, 9, and 13.5 cm) within each soil core to permit the measurement of gas concentration gradients within the soil core. Assays for denitrification were initiated by the addition of acetylene (5 kPa) to the soil column, and gas samples were taken from both the headspace and gas-permeable tubing at various times during a 46-h incubation. The results showed that at 18% air porosity, the headspace gases were well equilibrated with pore-space gases, and that gas emissions from the soil could provide good estimates of N2O and CO2 production. At air porosities of 13% and 0%, however, substantial storage of these gases occurred within the soil profiles, and measurements of surface emissions of gas from the soils greatly underestimated gas production. For example, the sole use of N2O emission measurements caused three to five fold underestimates of N2O production in soil maintained at 13% air porosity. It was concluded that the confounding influence of soil moisture on gas production and transport in soil greatly limits the use of surface emissions as a reliable indicator of gas production. This is particularly pertinent when assessing processes such as denitrification in which N gas production is greatly promoted by the conditions that limit O2 influx and concurrently limit N gas efflux.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 123-127 
    ISSN: 1432-0789
    Keywords: N-(n-Butyl) thiophosphoric triamide ; Phenylphosphorodiamidate ; Urea ; Urease ; N-(n-Butyl) phosphoric triamide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Comparison of the effects of N-(n-butyl) thiophosphoric triamide (NBPT) and phenylphosphorodiamidate (PPD) on hydrolysis of urea by plant (jackbean), microbial (Bacillus pasteurii), and soil urease showed that whereas NBPT was considerably more effective than PPD for inhibiting hydrolysis of urea added to soil, it was much less effective than PPD for inhibiting hydrolysis of urea by plant or microbial urease. Studies to account for this observation indicated that NBPT is rapidly decomposed in soil to a compound that is much more effective than NBPT for inhibition of urease activity and that this compound is N-(n-butyl) phosphoric triamide.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 24 (1997), S. 406-412 
    ISSN: 1432-0789
    Keywords: Key words Soil quality ; Biomass N ; Active N ; Plow tillage ; No tillage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Studies assessing the effects of different tillage and N fertilizer management practices on distributions and amounts of various C and N pools in soil can provide information about the influence of such management on the quality of organic matter in agricultural soils. To assess the influence of management on soil quality, we characterized the organic matter by measurements of total N, organic C, microbial biomass N and active N in the 0–20cm profiles of soil from long-term field experiments containing plots under treatments of plow or no tillage and 0, 135, or 270kgNha–1 fertilizer. Previous work had established that on the basis of the crop growth requirement of maize, these application rates of fertilizer N provide amounts of N that are deficient, sufficient, and excessive, respectively. The studies reported provide evidence that the sufficient amount of fertilizer N stimulated formation of the biologically active pools of N (biomass N and active N) in soils under no tillage treatments, but the excessive amount of fertilizer N tended to suppress these pools. The results demonstrated that these influences of excessive N fertilization were not reflected in distributions of total N or total organic C in soil profiles but became evident with the measurements of biologically active N. This suggests that such measurements can provide information related to the influence of different management practices on soil quality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 290-292 
    ISSN: 1432-0789
    Keywords: Thiophosphoryl triamide ; Urea ; Urease ; Phosphoryl triamide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Thiophosphoryl triamide inhibits soil urease activity when added to soil and is under consideration as a fertilizer amendment for retarding hydrolysis of urea fertilizer by soil urease. Work reported showed that this compound is a poor inhibitor of jackbean urease and that its ability to retard soil urease activity is due to its decomposition in soil with formation of phosphoryl triamide, which is a potent inhibitor of urease activity. This conclusion was supported by studies showing a close relationship between the peak area of the 31P-nuclear magnetic resonance (NMR) signal from phosphoryl triamide in thiophosphoryl triamide solutions that had been incubated with soil for various times and the ability of these solutions to inhibit jackbean urease activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 9 (1990), S. 252-256 
    ISSN: 1432-0789
    Keywords: Nitrapyrin (N-Serve) ; Etridiazole (Dwell) ; 2-Ethynylpyridine ; Urea hydrolysis ; Denitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Laboratory studies to evaluate 3-methylpyrazole-1-carboxamide (MPC) as a soil nitrification inhibitor showed that it was comparable to nitrapyrin (N-Serve) for inhibiting nitrification of ammonium in soil, but was not as effective as etridiazole (Dwell) or 2-ethynylpyridine. They also showed that the effectiveness of MPC as a soil nitrification inhibitor is markedly affected by soil type and soil temperature, that MPC is more effective for inhibiting nitrification of ammonium-N than of urea-N, and that MPC has little, if any, effect on hydrolysis of urea or denitrification of nitrate in soil. These observations and other work discussed indicate that MPC is one of the most promising compounds so far proposed for inhibition of nitrification in soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 11 (1991), S. 228-230 
    ISSN: 1432-0789
    Keywords: Soil microorganisms ; Urease production ; Oxygen ; Urea hydrolysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Several workers have reported that O2 has little, if any, effect on hydrolysis of urea by soil urease, but others have reported that it has a marked effect, hydrolysis being significantly faster in soils under aerobic conditions than in O2-depleted soils. In studies to account for these divergent results, we found that whereas plant residues and other readily decomposable organic materials markedly stimulated microbial production of urease in soils under aerobic conditions, they did not greatly stimulate production of urease in soils under anaerobic conditions. We also found that although anaerobic conditions retarded production of urease by soil microorganisms, they did not inhibit hydrolysis of urea by soil urease. These observations suggest that the divergent findings concerning the effect of O2 on hydrolysis of urea by soil urease may have resulted from differences in the amounts of readily decomposable organic materials in the soils studied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 11 (1991), S. 231-233 
    ISSN: 1432-0789
    Keywords: Nitrification ; Hydrocarbons ; Methane ; Ethane ; Ethylene ; Acetylene ; Nitrosomonas europaea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Recent work has shown that gaseous hydrocarbons such as methane, ethane, and ethylene are competitive inhibitors of the monooxygenase enzyme responsible for oxidation of ammonia by chemoautotrophic nitrifying microorganisms such as Nitrosomonas europaea. Because methane, ethane, and ethylene are produced by microbial activity in soil, we studied the possibility that they may inhibit oxidation of ammonia by the nitrifying soil microorganisms. We found that all three of these gaseous hydrocarbons inhibited nitrification in soil and that their ability to inhibit nitrification decreased in the order: ethylene 〉 ethane 〉 methane. Ethylene was much more effective than ethane or methane for inhibiting nitrification of ammonium in soil, but it was much less effective than acetylene, and it seems unlikely that the amounts of ethylene produced in soils will be sufficient to cause significant inhibition of nitrification by soil microorganisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...