ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2020-04-10
    Description: Aflatoxin contaminated maize is of public health concern in Kenya. Training farmers on good agricultural practice (GAP) has been touted as a mitigative measure. Little is known of the effect of such training on aflatoxin levels in maize grown in Kenya. This study evaluated what effect training farmers on GAP has on aflatoxin levels in maize grown in in maize grown in Kaptumo, Kilibwoni, and Kipkaren divisions in Nandi County. Ninety farmers were recruited for the study and interviewed on GAP. Maize samples were additionally collected from the participating farmers and analyzed for aflatoxins using competitive enzyme-linked immunosorbent assay (c-ELISA). All farmers prepared the land before planting, did correct spacing between the planted crops, carried out weeding, cleaned their stores before use, checked the condition of the maize after harvesting, sorted maize after shelling, and knew aflatoxins. A majority of the farmers (90%) used fertilizers, dried maize after harvesting, knew that aflatoxins were harmful to humans, and used clean transport in transporting the harvested maize. About 98% of farmers did stooking after harvesting and 97% used wooden pallets in the maize stores. The percentage of farmers who practiced early planting, top dressing, crop rotation, raising stores above the ground, applying insecticide after shelling and feeding damaged/rotten seeds to their animals was 84–96%, 62–80%, 67–85%, 86–98%, 63–81%, and 7–21% respectively. About 18/90 (20%) of all farmers reported that they had a relative who had died from liver cancer and the mean aflatoxin levels in season 1 were significantly different from season 2 (1.92 ± 1.07 ppb; 1.30 ± 1.50 ppb). Our findings suggest that although training farmers to adopt good agricultural practices was observed to be efficient in mitigating the problem of aflatoxins, the receptiveness of farmers to different aspects of the training may have differed. Therefore, in designing an optimized regional aflatoxin contamination strategy, local applicability should be considered.
    Electronic ISSN: 2413-4155
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-04-29
    Description: Aflatoxin contaminated maize is of public health concern in Kenya. Training farmers on good agricultural practice (GAP) has been touted as a mitigative measure. Little is known of the effect of such training on aflatoxin levels in maize grown in Kenya. This study evaluated what effect training farmers on GAP has on aflatoxin levels in maize grown in Kaptumo, Kilibwoni, and Kipkaren divisions in Nandi County, Kenya. Ninety farmers were recruited into farmer field schools and a questionnaire on GAP administered to each farmer. Maize samples were collected from the farmers and analyzed for aflatoxins using competitive enzyme-linked immunosorbent assay (c-ELISA). All farmers weeded their farms before planting, prepared the land, correctly spaced the seedlings, sorted the maize after shelling, cleaned stores before use and knew that aflatoxins were harmful to humans and animals. Eighty-one farmers did early planting, 88/90 did stooking after harvesting, 89/90 applied fertilizer, 89/90 cleared bushes around the stores, 87/90 used wooden pallets to store maize, 89/90 dried maize after harvesting, 83/90 did crop rotation, and 89/90 used clean transport. Moreover, 62/90 had a relative who had died from liver cancer, 13/90 had fed damaged/rotten seeds to animals, and 45/90 had stored harvested seeds on the ground. The mean aflatoxin levels in season 1 were significantly different from season 2 (1.918 ± 1.065; 1.301 ± 1.501). Our findings suggest that some aspects of the training on GAP were better received than others. Training farmers on GAP results in a decrease in aflatoxin levels in maize grown in Nandi County. Farmers in other maize growing areas of Kenya may benefit from similar training on GAP.
    Electronic ISSN: 2413-4155
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-26
    Description: Aflatoxin contaminated maize is of public health concern in Kenya. Training farmers on good agricultural practice (GAP) has been touted as a mitigative measure. Little is known of the effect of such training on aflatoxin levels in maize grown in Kenya. This study evaluated what effect training farmers on GAP has on aflatoxin levels in maize grown in Kaptumo, Kilibwoni, and Kipkaren divisions in Nandi County. Ninety farmers were recruited for the study and interviewed on GAP. Maize samples were additionally collected from the participating farmers and analyzed for aflatoxins using competitive enzyme-linked immunosorbent assay (c-ELISA). All farmers prepared the land before planting, applied correct spacing between the planted crops, carried out weeding, cleaned their stores before use, checked the condition of the maize after harvesting, sorted maize after shelling, and knew about aflatoxins. The majority of the farmers (90%) used fertilizers, dried maize after harvesting, knew that aflatoxins were harmful to humans, and used clean transport in transporting the harvested maize. About 98% of farmers did stooking after harvesting and 97% used wooden pallets in the maize stores. The percentage of farmers who practiced early planting, top dressing, crop rotation, raising stores above the ground, applying insecticide after shelling and feeding damaged/rotten seeds to their animals was 84–96%, 62–80%, 67–85%, 86–98%, 63–81%, and 7–21% respectively. About 18/90 (20%) of all farmers reported that they had a relative who had died from liver cancer, and the mean aflatoxin levels in season 1 were significantly different from those in season 2 (1.92 ± 1.07 ppb; 1.30 ± 1.50 ppb). Our findings suggest that although training farmers to adopt good agricultural practices was observed to be efficient in mitigating the problem of aflatoxins, the receptiveness of farmers to different aspects of the training may have differed. Therefore, in designing an optimized regional aflatoxin contamination strategy, local applicability should be considered.
    Electronic ISSN: 2413-4155
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...