ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-03-29
    Description: ZBTB transcription factors orchestrate gene transcription during tissue development. However, their roles in glioblastoma (GBM) remain unexplored. Here, through a functional screening of ZBTB genes, we identify that BCL6 is required for GBM cell viability and that BCL6 overexpression is associated with worse prognosis. In a somatic transgenic mouse model, depletion of Bcl6 inhibits the progression of KrasG12V-driven high-grade glioma. Transcriptome analysis demonstrates the involvement of BCL6 in tumor protein p53 (TP53), erythroblastic leukemia viral oncogene homolog (ErbB), and MAPK signaling pathways. Indeed, BCL6 represses the expression of wild-type p53 and its target genes in GBM cells. Knockdown of BCL6 augments the activation of TP53 pathway in response to radiation. Importantly, we discover that receptor tyrosine kinase AXL is a transcriptional target of BCL6 in GBM and mediates partially the regulatory effects of BCL6 on both MEK-ERK (mitogen-activated protein/extracellular signal-regulated kinase kinase–extracellular signal-regulated kinase) and S6K-RPS6 (ribosomal protein S6 kinase–ribosomal protein S6) axes. Similar to BCL6 silencing, depletion of AXL profoundly attenuates GBM proliferation both in vitro and in vivo. Moreover, targeted inhibition of BCL6/nuclear receptor corepressor 1 (NCoR) complex by peptidomimetic inhibitor not only significantly decreases AXL expression and the activity of MEK-ERK and S6K-RPS6 cascades but also displays a potent antiproliferative effect against GBM cells. Together, these findings uncover a glioma-promoting role of BCL6 and provide the rationale of targeting BCL6 as a potential therapeutic approach.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-15
    Description: Competitive BET bromodomain inhibitors (BBIs) targeting BET proteins (BRD2, BRD3, BRD4, and BRDT) show promising preclinical activities against brain cancers. However, the BET protein-dependent glioblastoma (GBM)-promoting transcriptional network remains elusive. Here, with mechanistic exploration of a next-generation chemical degrader of BET proteins (dBET6), we reveal a profound and consistent impact of BET proteins on E2F1- dependent transcriptional program in both differentiated GBM cells and brain tumor-initiating cells. dBET6 treatment drastically reduces BET protein genomic occupancy, RNA-Pol2 activity, and permissive chromatin marks. Subsequently, dBET6 represses the proliferation, self-renewal, and tumorigenic ability of GBM cells. Moreover, dBET6-induced degradation of BET proteins exerts superior antiproliferation effects compared to conventional BBIs and overcomes both intrinsic and acquired resistance to BBIs in GBM cells. Our study reveals crucial functions of BET proteins and provides the rationale and therapeutic merits of targeted degradation of BET proteins in GBM.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2016-12-02
    Description: Pediatric ALL is the most common childhood tumor and the leading cause of childhood cancer deaths. To gain a better understanding of the landscape of somatic mutations in ALL, we performed whole exome and targeted sequencing of 240 pediatric B-ALL patients with their matched remission samples. The significantly mutated genes fall into several common categories: RAS/receptor tyrosine kinases, epigenetic regulators, transcription factors involved in lineage commitment and p53/cell cycle pathway. RAS/receptor tyrosine kinases: the most frequently mutated genes were members of RAS signaling (NRAS, KRAS, FLT3, PTPN11). Besides the well know hotspot mutations [G12D/V/C (NRAS 13 cases, KRAS 13 cases), G13D (NRAS 14 cases, KRAS 11 cases) and Q61H/L/R/K (NRAS 15 cases, KRAS 1 case)], novel mutational sites were also identified for KRAS: A146T/P (3 cases), K117N/T (4 cases) and V14I (1 case). High frequency missense mutations of PTPN11 clustered in SH2 domain (included the canonical hotspot A72T (5 cases) and E76K/V (4 cases)) and tyrosine-phosphatase catalytic domain (G503R/V). For FLT3, well-appreciated activating hotspot mutations in the kinase domain (D835Y/Y842C) and several novel recurrent mutationswere identified. Epigenetic regulators: hotspot mutations were identified in histone H3K36 methyltransferase WHSC1. Mutation E1099K located in the SET domain, was identified in 10 patients as well as two of the 5 ALL cell lines that we sequenced (RS4;11, SEM). Stable silencing of E1099K mutant WHSC1 in RS4;11 cells by either lentiviral shRNA or CRISPR guide RNA (sgRNA) markedly reduced clonogenic growth both in vitro and in vivo, underscoring the critical role of WHSC1 in lymphoid malignancies. Two highly-related histone/non-histone acetyltransferases, CREBBP and EP300, were also prominently mutated in our cohort. Mutations of CREBBP predominantly occurred in the acetyltransferase domain, particularly in the hotspot R1446C/H. Mutations of chromatin remodeling genes (ARID1A and ARID2) have been identified in a number of cases. Silencing of ARID1A in ALL cell lines by lentiviral shRNA resulted in upregulation of the pro-growth regulator c-MYC, while forced expression of ARID1A reduced c-MYC luciferase reporter activity. In addition, silencing of ARID1A by either shRNA or CRISPR-sgRNA resulted in enhanced clonogenic growth, suggesting that ARID1A may be involved in the c-MYC pathway and modulates the ALL cell proliferation. Mutations of epigenetic regulators were also found in the polycomb complex (EZH2, EED, SUZ12), chromatin/nucleosome structure modifying proteins (CHD2, CHD3, CHD4), TET family proteins [TET1 (2 cases), TET2 (5 cases)] and histone modification proteins (HDAC1, SIRT1, BCOR, BRD8, lysine demethylase PHF2/KDM6A, histone acetyltransferase KAT6B). Transcription factors and p53/cell cycle pathway: a number of alterations of transcription factors essential for hematopoietic and lymphoid differentiation were noted including the lineage regulator PAX5 (5 missense, 3 indels) and ETV6 (6 cases, 3 were frameshift indel and 1 was a splice-site mutations). In addition, mutations were also found in other lineage transcription factors (IKZF2, IKZF3, EBF1), WT1 (6 cases, including 3 indels and 1 stop-gain mutations), RUNX family member [RUNX2 (7 cases), RUNX1 (1 case)], ERG1 (3 cases), GATA1/3 (1 case each) and CTCF. Somatic mutations of genes involved in the p53 pathway occurred in 18 patients, including TP53, ATM and the kinases that regulate p53 activities (HIPK1, HIPK2). Germline TP53 pathogenic variants were found in these 2 patients. Taken together, we extensively interrogated the mutational landscape of a large cohort of pediatric ALL samples by exome and targeted resequencing. This study provides a detailed mutational portrait of pediatric ALL and gives new insights into the molecular pathogenesis of this disease. Disclosures Kantarjian: Amgen: Research Funding; ARIAD: Research Funding; Bristol-Myers Squibb: Research Funding; Pfizer Inc: Research Funding; Delta-Fly Pharma: Research Funding; Novartis: Research Funding. Ogawa:Sumitomo Dainippon Pharma: Research Funding; Kan research institute: Consultancy, Research Funding; Takeda Pharmaceuticals: Consultancy, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-11-29
    Description: CEBPE is a member of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors essential for granulocytic differentiation. CEBPE is expressed in a stage-specific manner during myeloid differentiation and regulates transition from the promyelocyte to the myelocyte stage. It is essential for secondary and tertiary granule formation in granulocytes. We and others found germline mutations of the CEBPE gene in patients with neutrophil-specific granule deficiency. Their neutrophils display atypical bilobed nuclei, lack expression of granule proteins and these patients often have frequent bacterial infections. Cebpe knock-out mice resemble this clinical phenotype displaying a block in terminal differentiation and absence of secondary granule proteins. Given the tissue specific expression of CEBPE, we were interested in identifying genomic regions and factors that could regulate its lineage specific expression. Our CEBPE ChIP-seq in murine bone marrow cells showed binding of CEBPE to a region 6kb upstream of Cebpe gene. Chromosome conformation capture-on-chip (4C-seq) demonstrated an interaction between this putative regulatory element (6kb upstream region) and the core promoter of Cebpe. Analysis of available DNase-seq data sets revealed that the region bound by CEBPE displayed an open chromatin only in myeloid lineage cells. Further examination revealed binding of a myriad of hematopoietic transcription factors to the +6kb enhancer in HPC-7 (hematopoietic progenitor cells) and in 416B (myeloid progenitor cells), indicating that this region/enhancer might regulate the expression of CEBPE. Targeting of this region using dCas9-KRAB in murine 32D cells caused significant downregulation of RNA and protein levels of CEBPE compared to control cells. These targeted cells also exhibited impaired granulocytic differentiation with lower transcript levels of secondary granule proteins (Ltf and Ngp). To investigate further the role of the +6kb enhancer region in myelopoiesis, mice were generated with deletion of this region using CRISPR/Cas9 technology. Germ line deletion of the +6kb enhancer resulted in reduced levels of CEBPE and its target genes, accompanied by a severe block in granulocytic differentiation and a complete absence of CD11b+/Gr1hi population. This phenotype is nearly identical to our Cebpe KO mice. In summary, we have identified a novel enhancer crucial for regulating Cebpe, and required for normal granulocytic differentiation. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-11-29
    Description: ARID1A is a key component of ATP-dependent SWI/SNF complex involved in chromatin remodeling. Chromatin remodeling mediated by SWI/SNF complex is crucial for gene expression and affects a broad range of biological processes including hematopoietic development. ARID1A is frequently mutated across several solid tumors as well as hematopoietic malignancies, including Burkitt's lymphoma, diffuse large B-cell lymphoma and acute promyelocytic leukemia. Nevertheless, function of ARID1A in adult hematopoiesis and implications of its deficiency in development and progression of hematopoietic diseases has not been explored. In this study, we used a murine model of ARID1A deficiency to establish its essential function in maintaining normal hematopoietic development. Germline loss of Arid1a is embryonic lethal; therefore, we generated mice with deletion of Arid1a specifically in the hematopoietic compartment using Vav-iCre and Mx1-Cre transgenic mice. Arid1afl/fl;Vav-iCre+ mice occurred at a lower than expected frequency, suggesting some perinatal mortality. For the Mx1-Cre model, Arid1a exon 9 was excised by administrating poly(I:C) to adult mice and hematopoiesis was evaluated using flow cytometry. An increase in both percentage and absolute number of long-term hematopoietic stem cells (LTHSCs) defined as Lin-Sca1+Kit+CD34-FLT3- or Lin-Sca1+Kit+CD48-CD150+ occurred in the bone marrow using both models of Arid1a deficiency. RNA-sequencing of sorted LTHSCs from Arid1a KO bone marrow revealed dysregulated expression of several genes involved in cell cycle, G2/M checkpoint and related pathways. In vivo BrdU incorporation assays showed a substantially lower proportion of quiescent hematopoietic stem cells in Arid1a deficient bone marrow. To assess the reconstitution ability of ARID1A deficient HSCs, sorted KO or WT LTHSCs were transplanted into irradiated congenic recipient mice in competitive repopulation assays. Proportion of donor-derived cells in recipients transplanted with KO cells was strikingly lower compared to wild-type cells, suggesting poor reconstitution ability of Arid1a KO LTHSCs. Also, differentiation of both myeloid and lymphoid lineages was impaired in Arid1a KO mice compared to WT controls. To investigate the mechanism of perturbed differentiation of the myeloid and erythroid lineages, RNA-Seq was performed on sorted CMPs, GMPs and MEPs from WT and Arid1a KO BM. Our analysis showed significant decrease in expression of several transcription factors (Runx1, Gata2, Cebpa), which play a crucial role in lineage differentiation. To determine how Arid1a deficiency alters chromatin accessibility in myeloid precursors, Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-Seq) was performed on sorted Lin-Kit+ BM cells from both Arid1a KO and WT mice. A global reduction in open chromatin in Arid1a KO cells was noted compared to WT cells. A substantial overlap occurred between down regulated genes (RNA-seq) and reduced chromatin accessibility in Arid1a KO myeloid progenitors. Motifs for PU.1, RUNX1, GATA and CEBPA were significantly enriched in loci with reduced ATAC-seq signals in Arid1a KO cells. Our findings demonstrate an indispensable function of Arid1a in hematopoietic development and underline the importance of precise chromatin dynamics maintained by ARID1A-containing SWI/SNF complex in hematopoiesis. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-06
    Description: CCAAT/enhancer binding protein ε (CEBPE) is an essential transcription factor for granulocytic differentiation. Mutations of CEBPE occur in individuals with neutrophil-specific granule deficiency (SGD), which is characterized by defects in neutrophil maturation. Cebpe-knockout mice also exhibit defects in terminal differentiation of granulocytes, a phenotype reminiscent of SGD. Analysis of DNase I hypersensitive sites sequencing data revealed an open chromatin region 6 kb downstream of the transcriptional start site of Cebpe in murine myeloid cells. We identified an interaction between this +6-kb region and the core promoter of Cebpe using circular chromosome conformation capture sequencing (4C-seq). To understand the role of this putative enhancer in transcriptional regulation of Cebpe, we targeted it using catalytically inactive Cas9 fused to Krüppel-associated box (KRAB) domain and observed a significant downregulation of transcript and protein levels of CEBPE in cells expressing guide RNA targeting the +6-kb region. To further investigate the role of this novel enhancer further in myelopoiesis, we generated mice with deletion of this region using CRISPR/Cas9 technology. Germline deletion of the +6-kb enhancer resulted in reduced levels of CEBPE and its target genes and caused a severe block in granulocytic differentiation. We also identified binding of CEBPA and CEBPE to the +6-kb enhancer, which suggests their role in regulating the expression of Cebpe. In summary, we have identified a novel enhancer crucial for regulating expression of Cebpe and required for normal granulocytic differentiation.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-12-02
    Description: Relapse acute lymphoblastic leukemia (ALL) is the leading cause of childhood cancer deaths. Although relapse usually occurs in the bone marrow (medullary), extramedullary relapse occasionally occurs. Currently, the clonal origin and evolution of extramedullary relapse remain elusive. We selected two pediatric B-ALL patients who experienced testicular ALL relapse and interrogated their leukemic cells (diagnosis, remission, bone marrow relapse and testicular relapse) with whole exome sequencing. Case D483 (5.6 years old at diagnosis of ALL) developed bone marrow and testicular relapse 5 years after diagnosis of B-ALL. At diagnosis he was treated as an intermediate risk with hyperdiploid-ALL with the absence of any well-known ALL fusion-oncogene. Mutations of KRAS (G12D) and CREBBP (S1436C) were found in the founding leukemic clone at diagnosis and persisted in the bone marrow and testis at relapse). Mutation of CREBBP has been frequently found in ALL (particularly in hyperdiploid subtype) and is correlated with increased incidence of relapsed ALL. A MEF2B mutation (R17Q) was found in the bone marrow and testicular relapse sample. Missense mutation of this gene is frequently found in diffuse large B cell lymphoma (DLBCL); this protein regulates the expression of the proto-oncogene BCL6 and contributes to malignant transformation. Second child, case D727 (1.3 years old at diagnosis) harbored a MLL-AF9 fusion and was assigned as a high risk-ALL at diagnosis. Two NT5C2 mutations occurred at relapse, being present at different VAF in bone marrow and testicle: missense mutation R367Q was present with a VAF of 33.5% in bone marrow and 4.5% in testicle; while D407V was present with a VAF of 6.5% in bone marrow and 35.5% in the testicular relapse. NT5C2 encodes a 5'-nucleotidase involved in purine metabolism. The missense mutations (R367Q and D407V) identified here, have been reported as recurrent mutational hotspots of NT5C2 in relapse ALL and have been functionally validated. These mutations increase the 5'-IMP nucleotidase activity of NT5C2 protein leading to resistance to 6-mercaptopurine, a drug that was a component of the treatment regime of this patient. To understand the evolutionary trajectories of these two ALL cases, we analyzed clonal evolution based on their sequencing data. In patient D483, the relapse leukemia was directly evolved from the diagnosis leukemia clone: all of the mutations at diagnosis were persisted at relapse, and four mutated genes (MEF2B, KCNG1, AIM1, OTUD5) were acquired at both bone marrow and testicular relapse with different variant allele frequency (VAF). In patient D727, however, a faction of mutations present at diagnosis were subsequently lost at relapse, suggesting that relapsed leukemia arose from an ancestral subclone that developed before the overt leukemia at diagnosis. The mutational pattern and VAF cluster analysis results suggest that relapse in the patients' testicle represents an independently subclones from the relapse in their bone marrows. Taken together, our sequencing results suggest that relapse of patient D483 was directly evolved from the diagnosis leukemic clone; while the relapse leukemia cells (both bone marrow and testicle) of patient D727 was likely derived from a common ancestral clone, and the testicular relapse arose independently from the bone marrow relapse leukemia. Disclosures Lill: Sanofi: Speakers Bureau; California Cord Blood Services: Consultancy; Kite: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2015-11-26
    Description: Key Points MLL3 acts as tumor suppressor in FLT3-ITD AML. The existence of DNMT3A mutations in remission samples implies that the DNMT3A mutant clone can survive induction chemotherapy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...