ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-03-15
    Description: Otopetrins comprise a family of proton-selective channels that are critically important for the mineralization of otoliths and statoconia in vertebrates but whose underlying cellular mechanisms remain largely unknown. Here, we demonstrate that otopetrins are critically involved in the calcification process by providing an exit route for protons liberated by the formation of CaCO3. Using the sea urchin larva, we examined the otopetrin ortholog otop2l, which is exclusively expressed in the calcifying primary mesenchymal cells (PMCs) that generate the calcitic larval skeleton. otop2l expression is stimulated during skeletogenesis, and knockdown of otop2l impairs spicule formation. Intracellular pH measurements demonstrated Zn2+-sensitive H+ fluxes in PMCs that regulate intracellular pH in a Na+/HCO3−-independent manner, while Otop2l knockdown reduced membrane proton permeability. Furthermore, Otop2l displays unique features, including strong activation by high extracellular pH (〉8.0) and check-valve–like outwardly rectifying H+ flux properties, making it into a cellular proton extrusion machine adapted to oceanic living conditions. Our results provide evidence that otopetrin family proton channels are a central component of the cellular pH regulatory machinery in biomineralizing cells. Their ubiquitous occurrence in calcifying systems across the animal kingdom suggest a conserved physiological function by mediating pH at the site of mineralization. This important role of otopetrin family proton channels has strong implications for our view on the cellular mechanisms of biomineralization and their response to changes in oceanic pH.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Echinodermata; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression; Gene expression (incl. proteomics); Laboratory experiment; North Atlantic; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Registration number of species; Replicate; Salinity; Single species; Species; Strongylocentrotus purpuratus; Temperate; Temperature, water; Time in days; Treatment; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1125 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-12
    Description: Many calcifying organisms utilize metabolic CO2 to generate CaCO3 minerals to harden their shells and skeletons. Carbonic anhydrases are evolutionary ancient enzymes that were proposed to play a key role in the calcification process with the underlying mechanisms being little understood. Here we used the calcifying primary mesenchyme cells of the sea urchin larva to study the role of cytosolic (iCAs) and extracellular carbonic anhydrases (eCAs) in the cellular carbon concentration mechanism (CCM). Molecular analyses identified iCAs and eCAs in PMCs and highlight the prominent expression of a GPI-anchored membrane-bound CA (Cara7). Intracellular pH recordings in combination with CO2 pulse experiments demonstrated iCA activity in PMCs. iCA activity measurements together with pharmacological approaches revealed an opposing contribution of iCAs and eCAs on the CCM. H+-selective electrodes were used to demonstrate eCA catalyzed CO2 hydration rates at the cell surface. Knock-down of Cara7 reduced extracellular CO2 hydration rates accompanied by impaired formation of specific skeletal segments. Finally, reduced pHi regulatory capacities during inhibition and knock-down of Cara7 underline a role of this eCA in cellular HCO3- uptake. This work revealed the function of carbonic anhydrases in the cellular CCM of a marine calcifying animal. Extracellular hydration of metabolic CO2 by Cara7 coupled to HCO3- uptake mechanisms mitigates the loss of carbon and reduces the cellular proton load during the mineralization process. The findings of this work provide insights into the cellular mechanisms of an ancient biological process that is capable of utilizing CO2 to generate a versatile construction material.
    Keywords: biomineralization; carbon fixation; global carbon cycle; intracellular pH; metabolic CO2; Ocean acidification
    Type: Dataset
    Format: application/zip, 104.3 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-09
    Description: Pacemaker neurons exert control over neuronal circuit function by their intrinsic ability to generate rhythmic bursts of action potential. Recent work has identified rhythmic gut contractions in human, mice, and hydra to be dependent on both neurons and the resident microbiota. However, little is known about the evolutionary origin of these neurons and their interaction with microbes. In this study, we identified and functionally characterized prototypical ANO/SCN/TRPM ion channel-expressing pacemaker cells in the basal metazoanHydraby using a combination of single-cell transcriptomics, immunochemistry, and functional experiments. Unexpectedly, these prototypical pacemaker neurons express a rich set of immune-related genes mediating their interaction with the microbial environment. Furthermore, functional experiments gave a strong support to a model of the evolutionary emergence of pacemaker cells as neurons using components of innate immunity to interact with the microbial environment and ion channels to generate rhythmic contractions.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...