ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Sammlung
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2019-02-18
    Beschreibung: The abnormal conduction of cardiac activity in the lower chamber of the heart (ventricular) can cause cardiac diseases and sometimes leads to sudden death. In this paper, the author proposed the Reservoir Computing (RC) based Echo State Networks (ESNs) for ventricular heartbeat classification based on a single Electrocardiogram (ECG) lead. The Association for the Advancement of Medical Instrumentation (AAMI) standards were used to preprocesses the standardized diagnostic tool (ECG signals) based on the interpatient scheme. Despite the extensive efforts and notable experiments that have been done on machine learning techniques for heartbeat classification, ESNs are yet to be considered for heartbeat classification as a is fast, scalable, and reliable approach for real-time scenarios. Our proposed method was especially designed for Medical Internet of Things (MIoT) devices, for instance wearable wireless devices for ECG monitoring or ventricular heart beat detection systems and so on. The experiments were conducted on two public datasets, namely AHA and MIT-BIH-SVDM. The performance of the proposed model was evaluated using the MIT-BIH-AR dataset and it achieved remarkable results. The positive predictive value and sensitivity are 98.98% and 98.98%, respectively for the modified lead II (MLII) and 98.96% and 97.95 for the V1 lead, respectively. However, the experimental results of the state-of-the-art approaches, namely the patient-adaptable method, improved generalization, and the multiview learning approach obtained 92.8%, 87.0%, and 98.0% positive predictive values, respectively. These obtained results of the existing studies exemplify that the performance of this method achieved higher accuracy. We believe that the improved classification accuracy opens up the possibility for implementation of this methodology in Medical Internet of Things (MIoT) devices in order to bring improvements in e-health systems.
    Digitale ISSN: 2076-3417
    Thema: Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-08-17
    Beschreibung: The Internet of Medical Things (IoMT) workflow applications have been rapidly growing in practice. These internet-based applications can run on the distributed healthcare sensing system, which combines mobile computing, edge computing and cloud computing. Offloading and scheduling are the required methods in the distributed network. However, a security issue exists and it is hard to run different types of tasks (e.g., security, delay-sensitive, and delay-tolerant tasks) of IoMT applications on heterogeneous computing nodes. This work proposes a new healthcare architecture for workflow applications based on heterogeneous computing nodes layers: an application layer, management layer, and resource layer. The goal is to minimize the makespan of all applications. Based on these layers, the work proposes a secure offloading-efficient task scheduling (SEOS) algorithm framework, which includes the deadline division method, task sequencing rules, homomorphic security scheme, initial scheduling, and the variable neighbourhood searching method. The performance evaluation results show that the proposed plans outperform all existing baseline approaches for healthcare applications in terms of makespan.
    Digitale ISSN: 2079-9292
    Thema: Elektrotechnik, Elektronik, Nachrichtentechnik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...