ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2019-07-20
    Description: Emission sources of trace gases and aerosol particles in the South American (SA)and African (Af) continents have a strong seasonal and space variability associated with the extensive vegetation fires activities. In both continents, during the austral winter, the fires affect mainly tropical forest and savannah-type biomes and are mostly associated with deforestation and agricultural/pasture land management. Smoke aerosol particles, on average, contribute to at least 90% of the total aerosol optical depth (AOD) in the visible spectrum in the case of the South America regional smoke. Smoke aerosols also act as cloud condensation nuclei affecting cloud microphysics properties and therefore, changing the radiation budget, hydrological cycle and global circulation patterns over disturbed areas (Kaufman, 1995; Rosenfeld, 1999; Andreae,et al., 2004; Koren et al., 2004, Zhang, 2008; Ott et al., 2010; Randles et al., 2013). This study aims to evaluate and quantify the impact of including a comprehensive emission field of biomass burning aerosol on the performance of a seasonal climate forecast system, not only regarding the AOD itself but mainly on the meteorological state variable (e.g., precipitation and temperature). To address the questions put above, we designed two numerical experiments: 1- named"AERO_CTL" which applies the Quick Fire Emissions Dataset (QFED) emissions estimated with intra-diurnal variation (hereafter, BBE), and 2- named "AERO_CLM" where the sourcee mission is based on a climatology of the QFED emissions, with only monthly variation(hereafter, BBCLIM). Hindcast simulations were produced using the Goddard Earth ObservingSystem global circulation model, version 5, sub-seasonal to seasonal (GEOS5-S2S) system with a nominal spatial resolution of 56km (Rienecker et al., 2008). In both experiments, the aerosol feedbacks from cloud developments and radiation interactions were accounted. The two experiments consisted of 4 members each and ran from June to November spanning over the years 2000 to 2015. Model performance was evaluated by calculating statistical metrics on the mean area of SA and Af. Our results demonstrated that the skill model in predicting AOD is significantly improve when BBE source emission is applied over SA, but not over the Afcontinent. Over SA, the correlation between the AERO_CTL model configuration and MERRA-2 is 0.93 (R2= 0.86, RMS=0.02, BIAS=0.01), while the AERO_CLM model presents a value of0.81 (R2= 0.65, RMS=0.04, BIAS=0.06). However, the AERO_CTL experiment better represents the inter-annual variability of the AOS in both regions. The gain of the skill in predicting the AOD by the AERO_CTL experiment is also seen in some meteorological variables. We observed an increase in the model skill in predicting the 2-meter temperature and precipitation of up to 0.3 for the AERO_CTL experiment in comparison to the AERO_CLM. AERO_CLM. According to the analyzed hindcast, we inferred that representing the BBE more realistically implies in a significant gain of skills in the seasonal climate forecasting over SA and Af continents.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64697 , American Meteorological Society (AMS) Annual Meeting 2019; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: El Nino/Southern Oscillation (ENSO) has far reaching global climatic impacts and so extending useful ENSO forecasts would be of great benefit for society. However, one key variable that has yet to be fully exploited within coupled forecast systems is accurate estimation of near-surface ocean density. Satellite Sea Surface Salinity (SSS), combined with temperature, help to identify ocean density changes and associated mixing near the ocean surface. We assess the impact of satellite SSS observations for improving near-surface dynamics within ocean analyses and how these impact dynamical ENSO forecasts using the NASA GMAO (Global Modeling and Assimilation Office) Sub-seasonal to Seasonal (S2S_v2.1) coupled forecast system (Molod et al. 2018 - i.e. NASA's contribution to the NMME (National Multi-Model Ensemble) project). For all initialization experiments, all available along-track absolute dynamic topography and in situ observations are assimilated using the LETKF ( Local Ensemble Transform Kalman Filter) scheme similar to Penny et al., 2013. A separate reanalysis additionally assimilates Aquarius V5 (September 2011 to June 2015) and SMAP (Soil Moisture Active Passive) V4 (March 2015 to present) along-track data.We highlight the impact of satellite SSS on ocean reanalyses by comparing validation statistics of experiments that assimilate SSS versus our current prediction system that withholds SSS. We find that near-surface validation versus observed statistics for salinity are slightly degraded when assimilating SSS. This is an expected result due to known biases between SSS (measured by the satellite at approximately 1 centimeter) and in situ measurements (typically measured by Argo floats at 3 meters). On the other hand, a very encouraging result is that both temperature, absolute dynamic topography, and mixed layer statistics are improved with SSS assimilation. Previous work has shown that correcting near-surface density structure via gridded SSS assimilation can improve coupled forecasts. Here we present results of coupled forecasts that are initialized from the GMAO S2S reanalyses that assimilates/withholds along-track (L2) SSS. In particular, we contrast forecasts of the overestimated 2014 El Nino, the big 2015 El Nino, and the minor 2016 La Nina. For each of these ENSO scenarios, assimilation of satellite SSS improves the forecast validation. Improved SSS and density upgrades the mixed layer depth leading to more accurate coupled air/sea interaction.
    Keywords: Meteorology and Climatology
    Type: AGU GC51M-0930 , GSFC-E-DAA-TN63670 , AGU (American Geophysical Union) Fall Meeting; Dec 10, 2018 - Dec 14, 2018; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Sea surface salinity (SSS) observations from space allow us to investigate if improved estimates of near-surface density stratification and associated mixing can positively impact seasonal to interannual variability of tropical Pacific Ocean dynamics as well as dynamical ENSO forecasts. For the first part of the presentation, we utilize our intermediate-complexity coupled model. Baseline experiments assimilate satellite sea level (multi-satellite gridded AVISO, 2013), SST (Reynolds et al., 2004), and in situ subsurface temperature and salinity observations (GTSPP NODC, 2006). These baseline experiments are then compared with experiments that additionally assimilate Aquarius (V5.0 Lilly and Lagerloef, 2008) and SMAP (V4.0 Fore et al., 2016) SSS. Twelve-month forecasts are initialized for each month from September 2011 to September 2017. For initialization of the coupled forecast, the positive impact of SSS assimilation is brought about by surface freshening near the eastern edge of the western Pacific warm pool and density changes that lead to shallower mixed layer between 10S-5N. This pattern enhances air/sea interaction and amplifies the equatorial Kelvin wave signal. We find that including satellite SSS significantly improves NINO3.4 sea surface temperature anomaly validation over most forecast lead times. We next assess how different satellite SSS products impact the validation of ENSO forecasts. SMAP V4 reduces the salty bias in the western Pacific and so is an improvement upon SMAP V2 and SMOS V2 (Boutin et al., 2017) has similar validation characteristics as a combination of Aquarius and SMAP V4. Next we shift to present results from the NASA GMAO Sub-seasonal to seasonal (S2S_v2.1) production coupled model (i.e. the same model that contributes ENSO forecasts to the North American Multi-Model Ensemble Experiment). From March to June 2015, the availability of two overlapping satellite SSS instruments, Aquarius and SMAP, allows a unique opportunity to compare and contrast forecasts initialized with the benefit of these two satellite SSS observation types. We assess the impact of satellite sea surface salinity (SSS) observations on dynamical ENSO forecasts for the big 2015 El Nino event. We will present distinct experiments for the overlap period that include 1) freely evolving SSS (i.e. no satellite SSS as the production system), 2) Aquarius, and 3) SMAP initialization. Our results show that using Aquarius slightly improves validation of the reanalysis (including sea level and temperature statistics). Our production system without SSS assimilation generated too warm forecasts for the 2015 El Nino from March initial conditions. Incorporating Aquarius into initialization of the coupled system leads to a deeper, more realistic MLD that acts to damp the downwelling Kelvin signal and slightly cool NINO3.4 SST. With Aquarius the forecasts better match the observed amplitude of the 2015 event. On the other hand, SMAP V2 relaxation generally degrades validation statistics. At forecast initialization, SMAP is much too salty within 10o of the equator, leading to deeper MLD east of 165W. This deeper MLD leads to over-damping of the downwelling signal (i.e. relative upwelling), in turn leading to relatively too cool ENSO forecasts.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN62860 , 2018 Ocean Salinity Science Conference; Nov 06, 2018 - Nov 08, 2018; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: We assess the impact of satellite sea surface salinity (SSS) observations on dynamical ENSO forecasts. Assimilation of SSS improves the mixed layer depth (MLD) and modulates the Kelvin waves associated with ENSO. In column 2, the initialization differences between experiments that assimilate SSS minus those withholding SSS assimilation are presented. Column 3 shows examples of forecasts generated for the different phases of ENSO. From March to June 2015, the availability of two overlapping satellite SSS instruments, Aquarius and SMAP, allows a unique opportunity to compare and contrast coupled forecasts generated with the benefit of these two satellite SSS observation types. The far right column compares assimilation of Aquarius, SMAP and combined Aquaries and SMAP on forecasts for the 2015 El Nino.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN61307 , International Conference on Subseasonal to Seasonal Prediction (S2S); Sep 17, 2018 - Sep 21, 2018; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: We assess the impact of satellite sea surface salinity (SSS) observations on dynamical ENSO forecasts for the big 2015 El Nino event. From March to June 2015, the availability of two overlapping satellite SSS instruments, Aquarius and SMAP (Soil Moisture Active Passive Mission), allows a unique opportunity to compare and contrast forecasts generated with the benefit of these two satellite SSS observation types. Four distinct experiments are presented that include 1) freely evolving model SSS (i.e. no satellite SSS), relaxation to 2) climatological SSS (i.e. WOA13 SSS), 3) Aquarius, and 4) SMAP initialization. Coupled hindcasts are then generated from these initial conditions for March 2015. These forecasts are then validated against observations and evaluated with respect to the observed El Nino development.
    Keywords: Meteorology and Climatology; Oceanography
    Type: GSFC-E-DAA-TN56112 , Bridging Sustained Observations and Data Assimilation for TPOS2020 (Tropical Pacific Observing System 2020); May 01, 2018 - May 03, 2018; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-24
    Description: We assess the impact of satellite sea surface salinity (SSS) observations on dynamical ENSO (El Nino-Southern Oscillation) forecasts. Assimilation of SSS improves the mixed layer depth (MLD) and modulates the Kelvin waves associated with ENSO. In column 2, the initialization differences between experiments that assimilate SSS minus those withholding SSS assimilation are presented. Column 3 shows examples of forecasts generated for the different phases of ENSO assimilating the different satellite SSS. In general, for all phases of ENSO, SSS assimilation improves forecasts. The far right column compares ensemble means for assimilation of individual and combined SMOS, Aquarius, SMAP (Soil Moisture and Ocean Salinity, NASA Aquarius, Soil Moisture Active Passive) SSS forecasts. Finally, the latest forecasts are presented comparing assimilation versus no- assimilation of satellite SSS for single forecasts over the last year.
    Keywords: Oceanography; Meteorology and Climatology
    Type: OceanObs’19 OTN-CVC-09 , GSFC-E-DAA-TN73218 , OceanObs'19: An Ocean of Opportunity; Sep 16, 2019 - Sep 20, 2019; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: El Nino/Southern Oscillation (ENSO) has far reaching global climatic impacts and so extending useful ENSO forecasts would be of great benefit for society. However, one key variable that has yet to be fully exploited within coupled forecast systems is accurate estimation of near-surface ocean density. Satellite sea surface salinity (SSS), combined with temperature, help to identify ocean density changes and associated mixing near the ocean surface. We assess the impact of satellite SSS observations for improving near-surface dynamics within ocean analyses and how these impact dynamical ENSO forecasts using the NASA GMAO (Global Modeling and Assimilation Office) Sub-seasonal to Seasonal (S2S_v2.1) coupled forecast system (Molod et al. 2018 - i.e. NASA's contribution to the NMME (North American Multi-Model Ensemble) project). For all initialization experiments, all available along-track absolute dynamic topography and in situ observations are assimilated using the LETKF (Local Ensemble Transform Kalman Filter) scheme similar to Penny et al., 2013. A separate reanalysis additionally assimilates Aquarius V5 (September 2011 to June 2015) and SMAP (Soil Moisture Active Passive satellite) V4.1 (March 2015 to present) along-track data.We highlight the impact of satellite SSS on ocean reanalyses by comparing validation statistics of experiments that assimilate SSS versus our current prediction system that withholds SSS. We find that near-surface validation versus observed statistics for salinity are slightly degraded when assimilating SSS. This is an expected result due to known biases between SSS (measured by satellite at approximately 1-centimeter depth) and in situ measurements (typically measured by Argo floats at 3-meters depth). On the other hand, a very encouraging result is that both temperature, absolute dynamic topography, and mixed layer statistics are improved with SSS assimilation. Previous work has shown that correcting near-surface density structure via gridded SSS assimilation can improve coupled forecasts. Here we present results of coupled forecasts that are initialized from GMAO S2S spring reanalyses that assimilate/withhold along-track (L2) SSS. In particular, we contrast forecasts of the big 2015 El Nino, the 2017 La Nina and the 2018 weak El Nino. For each of these ENSO scenarios, assimilation of satellite SSS improves the forecast validation. Improved SSS and density upgrade the mixed layer depth leading to more accurate coupled air/sea interaction. From March to June 2015, the availability of two overlapping satellite SSS instruments, Aquarius and SMAP, allows a unique opportunity to compare and contrast forecasts initialized with the benefit of these two satellite SSS observation types. We assess the impact of gridded satellite sea surface salinity observations on dynamical ENSO forecasts for the big 2015 El Nino.
    Keywords: Meteorology and Climatology; Oceanography
    Type: GSFC-E-DAA-TN68840 , GODAE (Global Ocean Data Assimilation Experiment) OceanView Symposium (GOV 2019) (OceanPredict 19); May 06, 2019 - May 08, 2019; Halifax, NS; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We assess the impact of satellite sea surface salinity (SSS) observations on dynamical ENSO forecasts for the big 2015 El Nino event. From March to June 2015, the availability of two overlapping satellite SSS instruments, Aquarius and SMAP, allows a unique opportunity to compare and contrast coupled forecasts generated with the benefit of these two satellite SSS observation types. Four distinct experiments are presented that include 1) freely evolving model SSS (i.e. no satellite SSS), relaxation to 2) climatological SSS (i.e. WOA13 (World Ocean Atlas 2013) SSS), 3) Aquarius and 4) SMAP initialization. Coupled hindcasts are generated from these initial conditions for March 2015. These forecasts are then validated against observations and evaluated with respect to the observed El Nino development.
    Keywords: Oceanography
    Type: AGU Paper No. AI14A-1557 , GSFC-E-DAA-TN52668 , 2018 Ocean Sciences Meeting; Feb 11, 2018 - Feb 16, 2018; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...