ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 2224-2232 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We describe methods for automating the control and tracking of states within or near a chaotic attractor. The methods are applied in a simulation using a recently developed model of thermal pulse combustion as the dynamical system. The controlled state is automatically tracked while a parameter is slowly changed well beyond the usual flame-out point where the chaotic attractor ceases to exist because of boundary crisis. A learning strategy based on simple neural networks is applied to map-based proportional feedback control algorithms both with and without a recursive term. Adaptive recursive proportional feedback is found to track farther beyond the crisis (flame-out) boundary than does the adaptive non-recursive map-based control. We also found that a continuous-time feedback proportional to the derivative of a system variable will stabilize and track an unstable fixed point near the chaotic attractor. The positive results suggest that a pulse combustor, and other nonlinear systems, may be suitably controlled to reduce undesirable cyclic variability and extend their useful operating range. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 35 (1991), S. 89-106 
    ISSN: 1573-4889
    Keywords: high-temperature oxidation ; erosion ; corrosion-erosion ; modeling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract An approach is suggested for describing the rate of degradation of alloys subjected to the combined effects of high-temperature oxidation and erosion. The basis for this approach is essentially empirical, and is drawn from observations of the kinetics and scale morphologies of alloys in laboratory tests. The two major assumptions used are that the alloy surface is always covered by an oxide layer, and that only oxide (not alloy substrate) is removed by the erosion process. The mode of erosion is not explicitly defined. The rate of erosion, that is, the amount of oxide lost in a given erosion event, is taken to be proportional to the thickness of the oxide layer. The relationships developed have been found capable of accurately describing the shapes of oxidationerosion kinetic curves, and the predicted thickness of the steady-state oxide layers remaining on the alloys agreed reasonably with experimental observations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Results are presented of a study of the splat-quench solidification of small, freely falling liquid drops of the alloy Nitronic 40W, which were allowed to impact on a solid, planar, horizontal substrate. The principal variable was the substrate material, with substrates of copper, alumina and fused quartz being used. The shapes of the solidified splats were correlated with a simplified model for the energetics of the splatting process and with the thermal conductivity of the substrate. The measured results are qualitatively in agreement with theoretical predictions, and suggestions are offered for a more comprehensive model of splat-quench solidification. A relationship between sessile droplet diameter and parent wire diameter is also presented and discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 30 (1995), S. 2183-2193 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This review contains a description of modelling studies relative to functionally graded materials (FGMs). Two principal topics are covered: models for microstructure-dependent thermophysical properties, and models for the design, processing, and performance of FGMs. The former is a particularly important input to FGM modelling because of the wide variety of microstructures that can exist across the graded direction of a single material. Based on the work described in this review, recommendations are made regarding areas in which additional modelling studies would be beneficial. Suggested approaches to the modelling include the application of a number of powerful techniques, such as percolation theory, fractal analysis, lattice-based microstructure models, the renormalization group, neural networks, and fuzzy logic.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 16 (1981), S. 3405-3417 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A model originally developed to characterize the extension and breakage of interatomic bonds at the tip of a propagating brittle crack is used to describe crack extension through a crystalline lattice by kink motion. Magnitudes of the effective kink barriers against crack extension and healing are computed as a function of lattice strain and are found to exhibit a marked asymmetry, relative to each other, in their strain dependences. In addition, decohesion effects associated with the presence of certain foreign atomic species are simulated, and it is shown that, for a broad range of relative bond-weakening, the kink barriers against both crack extension and healing are completely eliminated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 27 (1992), S. 761-766 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The free fall of a liquid-metal drop, heat transfer from the drop to its environment, and solidification of the drop are described for both gaseous and vacuum atmospheres. A simple model, in which the drop is assumed to fall rectilinearly, with behaviour like that of a rigid particle, is developed to describe cooling behaviour. Recalescence of supercooled drops is assumed to occur instantaneously when a specified temperature is passed. The effects of solidification and experimental parameters on drop cooling are calculated and discussed. Major results include temperature as a function of time, and of drag, time to complete solidification, and drag as a function of the fraction of the drop solidified.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 27 (1992), S. 761-766 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The free fall of a liquid-metal drop, heat transfer from the drop to its environment, and solidification of the drop are described for both gaseous and vacuum atmospheres. A simple model, in which the drop is assumed to fall rectilinearly, with behaviour like that of a rigid particle, is developed to describe cooling behaviour. Recalescence of supercooled drops is assumed to occur instantaneously when a specified temperature is passed. The effects of solidification and experimental parameters on drop cooling are calculated and discussed. Major results include temperature as a function of time, and of drag, time to complete solidification, and drag as a function of the fraction of the drop solidified.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 34 (1999), S. 4141-4147 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Simulation of deposit growth on a two-dimensional substrate was studied based on a new model that tracks individual cubic particles as they form a deposit structure. The present model is an extension of the classical ballistic deposition model. Effects of three different parameters were studied. These include an attraction parameter that is a measure of the particle to particle attractions, an interaction length within which the particles are assumed to influence and be influenced by surrounding particles, and allowed sticking positions (face-face, edge-edge and corner-corner) that favor particular growth directions. Structures with widely varying properties were obtained using this model. The three parameters were found to have considerable effect on the structure including indications of morphological phase transformations. A new property of the system (saturated roughness/deposit growth rate) was identified that can classify the different types of growth into a single type.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 34 (1999), S. 5497-5503 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract We describe two methods for modeling the thermal conductivity and temperature profile in a graded composite film. The film consists of a random binary composite, whose concentration varies in the direction perpendicular to the film surface, and a fixed temperature difference is applied across the film. In the first method, the temperature profile is modeled directly, using a finite element technique in which the film is represented as a discrete network of thermal conductances, randomly distributed according to the assumed composition profile. The temperature at each node, and the effective thermal conductance, is then obtained by a transfer matrix technique. In the second approach, the film is treated by an effective-medium approximation, suitably generalized to account for the composition gradient. The methods are in rough agreement with each other, and suggest that thermophysical properties of the film can be treated reasonably well by approaches generalized from those which succeed in conventional composites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...