ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2018-09-10
    Description: Geosciences, Vol. 8, Pages 340: Numerical Modeling of Flow Patterns Applied to Analysis of Susceptibility to Movements of the Ground Geosciences doi: 10.3390/geosciences8090340 Authors: Marcelo Cando Jácome Antonio Martínez-Graña Mass movements in deformed areas of natural relief deformed by seismotectonic factors are one of the most destructive and recurrent natural hazards in the Republic of Ecuador, especially during intense rain periods, the El Niño phenomenon, or due to earthquakes such as the one that occurred on 16 April 2016 in the Ecuadorian coastline. This study proposes the application of Hydrological Model D8 and its derived morphometric parameters like slope, orientation of the slope, and curvatures, extracted from the high spatial resolution Digital Elevation Model (DEM), implemented in programs such as Rockworks 7 (gridzo), SURFER (downwards slope), ArcView (flowacc), and SAGA (curvatures) to obtain runoff flow, structural geological lineaments, and superficial deformations of the topographic relief that are the origin of erosion, superficial landslides, lateral propagation, of the rock–soil complex, mass flows, and deep gravitational deformations. This methodology has been validated in three locations with intense deformations: two in Ecuador and one in Spain. The DEM were obtained from the Ecuadorian Spatial Institute (ESI) (spatial resolution of 10 m), the Rural Technological Infrastructure and Information National System (SIGTIERRAS) (spatial resolution of 5 m), and the Council of Andalusia (spatial resolution of 5 m).
    Electronic ISSN: 2076-3263
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: Mass movements in deformed areas of natural relief deformed by seismotectonic factors are one of the most destructive and recurrent natural hazards in the Republic of Ecuador, especially during intense rain periods, the El Niño phenomenon, or due to earthquakes such as the one that occurred on 16 April 2016 in the Ecuadorian coastline. This study proposes the application of Hydrological Model D8 and its derived morphometric parameters like slope, orientation of the slope, and curvatures, extracted from the high spatial resolution Digital Elevation Model (DEM), implemented in programs such as Rockworks 7 (gridzo), SURFER (downwards slope), ArcView (flowacc), and SAGA (curvatures) to obtain runoff flow, structural geological lineaments, and superficial deformations of the topographic relief that are the origin of erosion, superficial landslides, lateral propagation, of the rock–soil complex, mass flows, and deep gravitational deformations. This methodology has been validated in three locations with intense deformations: two in Ecuador and one in Spain. The DEM were obtained from the Ecuadorian Spatial Institute (ESI) (spatial resolution of 10 m), the Rural Technological Infrastructure and Information National System (SIGTIERRAS) (spatial resolution of 5 m), and the Council of Andalusia (spatial resolution of 5 m).
    Electronic ISSN: 2076-3263
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: On 3 June 2018, a strong eruption of the Fuego volcano in Guatemala produced a dense cloud of 10-km-high volcanic ash and destructive pyroclastic flows that caused nearly 200 deaths and huge economic losses in the region. Subsequently, due to heavy rains, destructive secondary lahars were produced, which were not plotted on the hazard maps using the LAHAR Z software. In this work we propose to complement the mapping of this type of lahars using remote-sensing (Differential Interferometry, DINSAR) in Sentinel images 1A and 2A, to locate areas of deformation of the relief on the flanks of the volcano, areas that are possibly origin of these lahars. To determine the trajectory of the lahars, parameters and morphological indices were analyzed with the software System for Automated Geoscientific Analysis (SAGA). The parameters and morphological indices used were the accumulation of flow (FCC), the topographic wetness index (TWI), the length-magnitude factor of the slope (LS). Finally, a slope stability analysis was performed using the Shallow Landslide Susceptibility software (SHALSTAB) based on the Mohr–Coulomb theory and its parameters: internal soil saturation degree and effective precipitation, parameters required to destabilize a hillside. In this case, the application of this complementary methodology provided a more accurate response of the areas destroyed by primary and secondary lahars in the vicinity of the volcano.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...