ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2020-07-20
    Description: We compute the one-point probability distribution function (PDF) of an initially Gaussian dark matter density field using spherical collapse (SC). We compare the results to other forms available in the literature and also compare the PDFs in the Λ-cold dark matter model with an early dark energy (EDE) model. We find that the skewed lognormal distribution provides the best fit to the non-linear PDF from SC for both cosmologies, from a = 0.1 to 1 and for scales characterized by the comoving width of the Gaussian: σG = 0.5, 1, and 2. To elucidate the effect of cosmology, we examine the linear and non-linear growth rates through test cases. For overdensities, when the two models have the same initial density contrast, the differences due to cosmology are amplified in the non-linear regime, whereas, if the two models have the same linear density contrast today, then the differences in cosmology are damped in the non-linear regime. This behaviour is in contrast with voids, where the non-linear growth becomes ‘self-regulatory’ and is less sensitive to cosmology and initial conditions. To compare the PDFs, we examine the difference of the PDFs and evolution of the width of the PDF. The trends with scale and redshift are as expected. A tertiary aim of this paper was to check if the fitting form for the non-linear density–velocity divergence relation, derived for constant equation of state (w) models by Nadkarni-Ghosh holds for the EDE model. We find that it does with an accuracy of 4 per cent, thus increasing its range of validity.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-17
    Description: Complex turbulent motions of magnetized gas are ubiquitous in the interstellar medium (ISM). The source of this turbulence, however, is still poorly understood. Previous work suggests that compression caused by supernova shockwaves, gravity, or cloud collisions, may drive the turbulence to some extent. In this work, we present three-dimensional (3D) magnetohydrodynamic (MHD) simulations of contraction in turbulent, magnetized clouds from the warm neutral medium of the ISM to the formation of cold dense molecular clouds, including radiative heating and cooling. We study different contraction rates and find that observed molecular cloud properties, such as the temperature, density, Mach number, and magnetic field strength, and their respective scaling relations, are best reproduced when the contraction rate equals the turbulent turnover rate. In contrast, if the contraction rate is significantly larger (smaller) than the turnover rate, the compression drives too much (too little) turbulence, producing unrealistic cloud properties. We find that the density probability distribution function evolves from a double lognormal representing the two-phase ISM, to a skewed, single lognormal in the dense, cold phase. For purely hydrodynamical simulations, we find that the effective driving parameter of contracting cloud turbulence is natural to mildly compressive (b ∼ 0.4–0.5), while for MHD turbulence, we find b ∼ 0.3–0.4, i.e. solenoidal to naturally mixed. Overall, the physical properties of the simulated clouds that contract at a rate equal to the turbulent turnover rate, indicate that large-scale contraction may explain the origin and evolution of turbulence in the ISM.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-02
    Description: We apply a turbulence-regulated model of star formation to calculate the star formation rate (SFR) of dense star-forming clouds in simulations of jet–interstellar medium (ISM) interactions. The method isolates individual clumps and accounts for the impact of virial parameter and Mach number of the clumps on the star formation activity. This improves upon other estimates of the SFR in simulations of jet–ISM interactions, which are often solely based on local gas density, neglecting the impact of turbulence. We apply this framework to the results of a suite of jet–ISM interaction simulations to study how the jet regulates the SFR both globally and on the scale of individual star-forming clouds. We find that the jet strongly affects the multiphase ISM in the galaxy, inducing turbulence and increasing the velocity dispersion within the clouds. This causes a global reduction in the SFR compared to a simulation without a jet. The shocks driven into clouds by the jet also compress the gas to higher densities, resulting in local enhancements of the SFR. However, the velocity dispersion in such clouds is also comparably high, which results in a lower SFR than would be observed in galaxies with similar gas mass surface densities and without powerful radio jets. We thus show that both local negative and positive jet feedback can occur in a single system during a single jet event, and that the SFR in the ISM varies in a complicated manner that depends on the strength of the jet–ISM coupling and the jet break-out time-scale.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...