ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Microbiology 55 (2001), S. 709-742 
    ISSN: 0066-4227
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Comparative analysis of bacterial, archaeal, and eukaryotic genomes indicates that a significant fraction of the genes in the prokaryotic genomes have been subject to horizontal transfer. In some cases, the amount and source of horizontal gene transfer can be linked to an organism's lifestyle. For example, bacterial hyperthermophiles seem to have exchanged genes with archaea to a greater extent than other bacteria, whereas transfer of certain classes of eukaryotic genes is most common in parasitic and symbiotic bacteria. Horizontal transfer events can be classified into distinct categories of acquisition of new genes, acquisition of paralogs of existing genes, and xenologous gene displacement whereby a gene is displaced by a horizontally transferred ortholog from another lineage (xenolog). Each of these types of horizontal gene transfer is common among prokaryotes, but their relative contributions differ in different lineages. The fixation and long-term persistence of horizontally transferred genes suggests that they confer a selective advantage on the recipient organism. In most cases, the nature of this advantage remains unclear, but detailed examination of several cases of acquisition of eukaryotic genes by bacteria seems to reveal the evolutionary forces involved. Examples include isoleucyl-tRNA synthetases whose acquisition from eukaryotes by several bacteria is linked to antibiotic resistance, ATP/ADP translocases acquired by intracellular parasitic bacteria, Chlamydia and Rickettsia, apparently from plants, and proteases that may be implicated in chlamydial pathogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 209 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The lipoyl-binding domain is often present, in one or several copies, in the E2 subunit and, less often, in the E1 and E3 subunits of 2-oxo acid dehydrogenase complexes. Phylogenetic analysis shows evidence of multiple, independent intragenomic recombination events between different versions of the lipoyl-binding domain in various bacteria and eukaryotic mitochondria, leading to homogenization of the sequences of the lipoyl-binding domain within the same enzymatic complex in several bacterial lineages. This appears to be the first case of sequence homogenization at the level of an individual domain in prokaryotes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We have recently shown that Deinococcus radiodurans and other radiation resistant bacteria accumulate exceptionally high intracellular manganese and low iron levels. In comparison, the dissimilatory metal-reducing bacterium Shewanella oneidensis accumulates Fe but not Mn and is extremely sensitive to radiation. We have proposed that for Fe-rich, Mn-poor cells killed at radiation doses which cause very little DNA damage, cell death might be induced by the release of Fe(II) from proteins during irradiation, leading to additional cellular damage by Fe(II)-dependent oxidative stress. In contrast, Mn(II) ions concentrated in D. radiodurans might serve as antioxidants that reinforce enzymic systems which defend against oxidative stress during recovery. We extend our hypothesis here to include consideration of respiration, tricarboxylic acid cycle activity, peptide transport and metal reduction, which together with Mn(II) transport represent potential new targets to control recovery from radiation injury.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 227 (2003), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Aconitase, an essential enzyme of the tricarboxylic acid cycle (TCA), so far has been identified only in a minority of archaeal genomes. This enzyme belongs to the aconitase A family, which is represented in most bacteria and eukaryotes. Using iterative sequence database search, we linked two previously uncharacterized protein families (COG1679 and COG1786), respectively, to the three Fe–S-cluster-associated aconitase domains and the swiveling domain, the four domains that are present in all known aconitase families. The respective genes are often found in one predicted operon and, moreover, are fused in several species, suggesting a functional and physical interaction. We predict that these proteins together comprise a previously undetected, distinct aconitase family, which we designated aconitase X. Aconitase X is encoded in the genomes of many archaea and some proteobacteria. Among archaea, the pattern of aconitase X occurrence complements that of aconitase A such that together the two enzymes account for aconitase activity in all archaea. Phylogenetic analysis indicates that aconitase X is likely to be the ancestral archaeal form, with non-orthologous displacement in some of the archaea apparently brought about by horizontal transfer of the gene for bacterial aconitase A. The prediction of aconitase X completes the TCA cycle for Methanothermobacter thermoautotrophicus and Archaeoglobus fulgidus and suggests that most archaea have a full TCA cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-6857
    Keywords: Deinococcus ; genome analysis ; protein family ; specific expansion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Computer analysis of the complete genome of Deinococcus radioduransR1 reveals a number of protein families, which are over-represented in this organism, compared to most other bacteria with known genome sequences. These families include both previously characterized and uncharacterized proteins. Most of the families whose functions are known or could be predicted seem to be related to stress-response and elimination of damage products (cell-cleaning). The two most prominent family expansions are the Nudix (MutT) family of pyrophosphohydrolases and a previously unnoticed family of proteins related to Bacillus subtilisDinB that could possess a metal-dependent enzymatic activity whose exact nature remains to be determined. Several proteins of the expanded families, particularly the Nudix family, are fused to other domains and form multidomain proteins that are so far unique for Deinococcus. The domain composition of some of these proteins indicates that they could be involved in novel DNA-repair pathways. Such unique proteins are good targets for knock-out and gene expression studies, which are aimed to shed light on the unusual features of this interesting10.6pt bacterium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-05-21
    Description: The CRISPR-Cas systems of bacterial and archaeal adaptive immunity consist of direct repeat arrays separated by unique spacers and multiple CRISPR-associated (cas) genes encoding proteins that mediate all stages of the CRISPR response. In addition to the relatively small set of core cas genes that are typically present in all CRISPR-Cas systems of a given (sub)type and are essential for the defense function, numerous genes occur in CRISPR-cas loci only sporadically. Some of these have been shown to perform various ancillary roles in CRISPR response, but the functional relevance of most remains unknown. We developed a computational strategy for systematically detecting genes that are likely to be functionally linked to CRISPR-Cas. The approach is based on a “CRISPRicity” metric that measures the strength of CRISPR association for all protein-coding genes from sequenced bacterial and archaeal genomes. Uncharacterized genes with CRISPRicity values comparable to those of cas genes are considered candidate CRISPR-linked genes. We describe additional criteria to predict functionally relevance for genes in the candidate set and identify 79 genes as strong candidates for functional association with CRISPR-Cas systems. A substantial majority of these CRISPR-linked genes reside in type III CRISPR-cas loci, which implies exceptional functional versatility of type III systems. Numerous candidate CRISPR-linked genes encode integral membrane proteins suggestive of tight membrane association of CRISPR-Cas systems, whereas many others encode proteins implicated in various signal transduction pathways. These predictions provide ample material for improving annotation of CRISPR-cas loci and experimental characterization of previously unsuspected aspects of CRISPR-Cas system functionality.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-09-27
    Print ISSN: 1554-8929
    Electronic ISSN: 1554-8937
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-01-17
    Description: We investigate the myosin XI-driven transport network inArabidopsisusing protein–protein interaction, subcellular localization, gene knockout, and bioinformatics analyses. The two major groups of nodes in this network are myosins XI and their membrane-anchored receptors (MyoB) that, together, drive endomembrane trafficking and cytoplasmic streaming in the plant cells. The network shows high node connectivity and is dominated by generalists, with a smaller fraction of more specialized myosins and receptors. We show that interaction with myosins and association with motile vesicles are common properties of the MyoB family receptors. We identify previously uncharacterized myosin-binding proteins, putative myosin adaptors that belong to two unrelated families, with four members each (MadA and MadB). Surprisingly, MadA1 localizes to the nucleus and is rapidly transported to the cytoplasm, suggesting the existence of myosin XI-driven nucleocytoplasmic trafficking. In contrast, MadA2 and MadA3, as well as MadB1, partition between the cytosolic pools of motile endomembrane vesicles that colocalize with myosin XI-K and diffuse material that does not. Gene knockout analysis shows that MadB1–4 contribute to polarized root hair growth, phenocopying myosins, whereas MadA1–4 are redundant for this process. Phylogenetic analysis reveals congruent evolutionary histories of the myosin XI, MyoB, MadA, and MadB families. All these gene families emerged in green algae and show concurrent expansions via serial duplication in flowering plants. Thus, the myosin XI transport network increased in complexity and robustness concomitantly with the land colonization by flowering plants and, by inference, could have been a major contributor to this process.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-08-15
    Description: A survey of bacterial and archaeal genomes shows that many Tn7-like transposons contain minimal type I-F CRISPR-Cas systems that consist of fused cas8f and cas5f, cas7f, and cas6f genes and a short CRISPR array. Several small groups of Tn7-like transposons encompass similarly truncated type I-B CRISPR-Cas. This minimal gene complement of the transposon-associated CRISPR-Cas systems implies that they are competent for pre-CRISPR RNA (precrRNA) processing yielding mature crRNAs and target binding but not target cleavage that is required for interference. Phylogenetic analysis demonstrates that evolution of the CRISPR-Cas–containing transposons included a single, ancestral capture of a type I-F locus and two independent instances of type I-B loci capture. We show that the transposon-associated CRISPR arrays contain spacers homologous to plasmid and temperate phage sequences and, in some cases, chromosomal sequences adjacent to the transposon. We hypothesize that the transposon-encoded CRISPR-Cas systems generate displacement (R-loops) in the cognate DNA sites, targeting the transposon to these sites and thus facilitating their spread via plasmids and phages. These findings suggest the existence of RNA-guided transposition and fit the guns-for-hire concept whereby mobile genetic elements capture host defense systems and repurpose them for different stages in the life cycle of the element.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-13
    Print ISSN: 1754-2189
    Electronic ISSN: 1750-2799
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...