ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flight path and bank angle using only commands to the throttles. While the program was highly successful, this paper concentrates on the challenges encountered using engine thrust as the only control effector. Compared to conventional flight control surfaces, the engines are slow, nonlinear, and have limited control effectiveness. This increases the vulnerability of the system to outside disturbances and changes in aerodynamic conditions. As a result, the PCA system had problems with gust rejection. Cross coupling of the longitudinal and lateral axis also occured, primarily as a result of control saturation. The normally negligible effects of inlet airframe interactions became significant with the engines as the control effector. Flight and simulation data are used to illustrate these difficulties.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program 229-244 (SEE N95-3; An Electronic Worksh
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Flight tests of the propulsion controlled aircraft (PCA) system on the NASA F-15 airplane evolved as a result of a long series of simulation and flight tests. Initially, the simulation results were very optimistic. Early flight tests showed that manual throttles-only control was much more difficult than the simulation, and a flight investigation was flown to acquire data to resolve this discrepancy. The PCA system designed and developed by MDA evolved as these discrepancies were found and resolved, requiring redesign of the PCA software and modification of the flight test plan. Small throttle step inputs were flown to provide data for analysis, simulation update, and control logic modification. The PCA flight tests quickly revealed less than desired performance, but the extensive flexibility built into the flight PCA software allowed rapid evaluation of alternate gains, filters, and control logic, and within 2 weeks, the PCA system was functioning well. The initial objective of achieving adequate control for up-and-away flying and approaches was satisfied, and the option to continue to actual landings was achieved. After the PCA landings were accomplished, other PCA features were added, and additional maneuvers beyond those originally planned were flown. The PCA system was used to recover from extreme upset conditions, descend, and make approaches to landing. A heading mode was added, and a single engine plus rudder PCA mode was also added and flown. The PCA flight envelope was expanded far beyond that originally designed for. Guest pilots from the USAF, USN, NASA, and the contractor also flew the PCA system and were favorably impressed.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program; p 193-221
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.
    Keywords: Aircraft Stability and Control
    Type: NASA-TP-3627 , H-2048 , NAS 1.60:3627
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The parameter estimation algorithm developed for the F100 engine is described. The algorithm is a two-step process. The first step consists of a Kalman filter estimation of five deterioration parameters, which model the off-nominal behavior of the engine during flight. The second step is based on a simplified steady-state model of the 'compact engine model' (CEM). In this step the control vector in the CEM is augmented by the deterioration parameters estimated in the first step. The results of an evaluation made using flight data from the F-15 aircraft are presented, indicating that the algorithm can provide reasonable estimates of engine variables for an advanced propulsion-control-law development.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AIAA PAPER 90-1921
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A large piloted vertical motion simulator was used to assess the performance of a preliminary decoupling control law for an early version of the F-8 oblique wing research demonstrator airplane. Evaluations were performed for five discrete flight conditions, ranging from low-altitude subsonic Mach numbers to moderate-altitude supersonic Mach numbers. Asymmetric sideforce as a function of angle of attack was found to be the primary cause of both the lateral acceleration noted in pitch and the tendency to roll into left turns and out of right turns. The flight control system was shown to be effective in generally decoupling the airplane and reducing the lateral acceleration in pitch maneuvers.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: AIAA PAPER 88-0402
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TP-2874 , H-1430 , NAS 1.60:2874
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TM-4503 , H-1911 , NAS 1.15:4503 , AIAA PAPER 93-1820 , AIAA/SAE/ASME Joint Propulsion Conference; Jun 28, 1993 - Jun 30, 1993; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.
    Keywords: Aircraft Design, Testing and Performance
    Type: H-2000 , AIAA Paper 94-3359 , Joint Propulsion; Jun 27, 1994 - Jun 29, 1994; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TM-4590 , H-1988 , NAS 1.15:4590 , AIAA PAPER 94-2123 , Biennial Flight Test Conference; Jun 20, 1994 - Jun 23, 1994; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-27
    Description: Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA PAPER 92-4109 , In: AIAA Biennial Flight Test Conference, 6th, Hilton Head Island, SC, Aug. 24-26, 1992, Technical Papers (A93-11251 01-05); p. 282-299.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...