ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2018-01-12
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-28
    Description: The role of turbulent mixing in the formation of the structure of stratocumulus clouds is investigated using a Lagrangian–Eulerian parcel cloud model. The model contains approximately 2000–5000 adjacent parcels with the linear size of 25–40 m, moving with a turbulent-like velocity field with observed energetic and statistical properties. The process of turbulent mixing of Lagrangian parcels is parameterized using the k-epsilon theory extended to the case of mixing nonconservative values. The model includes the interaction of cloud and the overlying inversion layer. The stratocumulus clouds observed during flight RF01 of the Second Dynamics and Chemistry of the Marine Stratocumulus field study (DYCOMS II) are simulated. Effects of turbulent mixing are analyzed by comparing simulations with and without mixing. When mixing between parcels is included, the thermodynamical and microphysical structure of the measured stratocumulus clouds is properly reproduced. Mixing leads to a more uniform cloud structure with well-defined borders. Good agreement is found between Paluch diagrams calculated in the model and those reproduced from measurements. The radius of correlation of liquid water content and other variables calculated in the model is on the order of several hundred meters and agrees well with observations. When mixing is not included, the radius of correlation is on the scale of a single parcel and the cloud layer contains dry entrained parcels, making the microphysical structure unrealistic. It is also shown that turbulent mixing leads to an increase in the effective radius and facilitates and accelerates drizzle formation. The time in which a 40-m air parcel preserves its identification is estimated from the results and is found to be on the order of 25 min.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-04
    Description: The evolution of monodisperse and polydisperse droplet size distributions (DSDs) during homogeneous mixing is analyzed. Time-dependent universal analytical relations of supersaturation and liquid water content, which depend on a sole non-dimensional parameter, are obtained for a monodisperse DSD. The evolution of moments and moment-relation functions in the course of the homogeneous evaporation of polydisperse DSDs is analyzed using a parcel model. It is shown that the classic conceptual scheme, according to which homogeneous mixing leads to a decrease in the droplet mass under constant droplet concentration, is valid only in cases of monodisperse or initially very narrow polydisperse DSDs. In cases of wide polydisperse DSDs, mixing and successive evaporation lead to a decrease of both mass and concentration such that the characteristic droplet sizes remain nearly constant. As this feature is typically associated with inhomogeneous mixing, we conclude that in cases of an initially wide DSD at cloud top, homogeneous mixing is nearly indistinguishable from inhomogeneous mixing.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-09-07
    Description: The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian-Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic and characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. It was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-17
    Description: The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic and characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. It was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-08-23
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-07-26
    Description: Dry intrusion (DI) air streams typically comprise the cold and dry sector of extratropical cyclones. These air parcels descend slantwise from the midlatitude upper troposphere towards the surface in lower latitudes, where the airstreams typically fan out behind the cyclone’s trailing cold front. In this talk I will review recent results based on a Lagrangian-based global climatology of DIs using ECMWF reanalysis data, allowing the quantification of the intrusions’ occurrence frequencies and association with extreme weather. Using representative case studies and longer-term climatologies we understand that DI air starts its descent from the upper troposphere behind midlatitude troughs of Rossby waves. When interacting with cyclones in the storm tracks, they are associated with strong cold fronts in the cyclone southwest quadrant (in the northern hemisphere) and with marked anomalies in the lower troposphere. Namely, dry and cold anomalies prevail, together with strong winds and destabilized lower troposphere. The modification of the lower troposphere by DIs entails strong associations with a diverse set of weather extremes, from heavy precipitation ahead of the dry air, strong winds and extreme cold temperatures, to wildfires in southeast Australia and Saharan dust storms. Finally, we note that surface extremes associated with DIs may extend beyond the midlatitudes, into subtropical and tropical regions.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-08-09
    Description: The passage of an extreme cold front is one of the main contributors to the spread of large fires in Southeast Australia. In this work we investigate the mechanisms driving extreme temperature contrast during the Black Saturday Fires in February 2009. Using Lagrangian back-trajectories calculated for the days before and after the cold front, we examine the change in potential temperature, to quantify the relative contributions of the origin climatology of the airmass, an initial anomaly at the origin and diabatic processes to the temperature anomaly at the surface. We find that in the warm sector the warm anomaly was a combination of descending airmasses transporting climatologically warmer air from the west along with an initial warm anomaly at origin, together with lower-tropospheric air flowing close to the surface warming by diabetic heating. After the cold front passage, descending airmasses as part of a large dry intrusion brought a cold anomaly to the area. At the origin of the climatologically colder air, an initial cold anomaly was found. The cold anomaly at the surface was further enhanced by transport of colder polar air in the lower levels. Our results show that descending airstreams before and after the cold front can lead to reverse effects, generating a warm anomaly and then a cold one. This combination led to the formation of an extremely strong cold front responsible for the spread of the fires. In addition, these results emphasize the important role of dry intrusions in the formation of extreme fire weather.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...