ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 106 (2000), S. 439-448 
    ISSN: 1573-8469
    Keywords: biological control ; Botrytis cinerea ; Clonostachys rosea ; Gliocladium roseum ; rose ; host development ; wounds ; host residues ; microflora
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Development of Clonostachys rosea in rose leaves and petals and control of Botrytis cinerea by the agent were investigated. C. rosea germinated, established endophytic growth, and sporulated abundantly whether the tissues were mature, senescent or dead when inoculated. Germination incidence was moderate on mature and senescent leaves (47% and 35%) and petals (31% and 43%), and high (〉98%) on dead tissues. Sporulation of C. rosea in tissues inoculated when mature, senescent or dead averaged 41%, 61%, and 75% in leaves, and 48%, 87% and 53% in petals. When leaves were wounded with needles before inoculation, germination of C. rosea increased from 45–56% to 90–92%, but sporulation became high (〉 75%) regardless of wounds. When leaves were inoculated with C. rosea at 0–24 h after wounding and subsequently with B. cinerea, germination of the pathogen was reduced by 25–41% and sporulation by ≥ 99%. A humid period prior to inoculation of senescent or dead leaves promoted communities of indigenous fungi, reduced sporulation of C. rosea and B. cinerea, and, in dead leaves, increased control of the pathogen associated with C. rosea. Applied at high density, isolates of indigenous Penicillium sp. and Alternaria alternata from rose interacted with C. rosea and reduced control of the pathogen by 16% and 21%, respectively. In conclusion, C. rosea markedly suppressed sporulation of B. cinerea in rose leaves and petals regardless of developmental stage, minor wounds, and natural densities of microflora. This versatility should allow C. rosea to effectively control inoculum production of B. cinerea in rose production systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...