ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-05-09
    Description: The New York City water supply region, located in the Catskill Mountains in upstate New York, has always had a historically variable snow cover, with consequent effects on the magnitude of spring runoff and the relative importance of winter vs. spring periods on annual hydrologic and nutrient budgets. Simulations show that under present conditions (1966-2005) on average 38% (12%-70%) of the annual total dissolved phosphorus load occurs during winter (Nov - Feb), while future predictions (2046- 2065 and 2081-2100) show winter nutrient loads may account for an average of 46% (18%-73%) of the annual load. It is expected that changes in the importance of winter nutrient loading will lead to some increase in phytoplankton growth under isothermal conditions prior to the onset of thermal stratification, a reduced bloom coinciding with the onset of thermal stratification, and on an annual basis somewhat lower levels of biomass. However, future climate simulations using two different one dimensional reservoir water quality models show no strong relationship between changes in algal biomass and the proportion of winter nutrient loading. The lack of a winter response calls into question model assumptions concerning the growth potential of phytoplankton under deeply mixed low light conditions, as well as factors influencing the bioavailability of nutrients input during the winter period. This illustrates the pitfalls of simulating future climate conditions, when the seasonality of model drivers has changed, and processes regulating winter conditions are not strongly represented. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-16
    Description: Snowfall is an important part of the yearly water balance for the Catskill Mountains in New York State, the location of water supply reservoirs for New York City. Recent studies have shown that the effects of climate change on the hydrology of the Catskills will most likely create (1) a decrease in the proportion of precipitation falling as snow, (2) a shift in the timing of snowmelt that will cause snowmelt-supplemented streamflow events to occur earlier in the fall and winter, and (3) a decrease in the magnitude of traditionally high April streamflow. The shift in timing of snowmelt-influenced streamflow events is measured by the winter-early spring centre of volume (WSCV), defined as the Julian Day on which half the total streamflow volume from January to May occurs. Studies of streamflow, precipitation, and temperature trends in the last 50 years have shown that the WSCV is already earlier by about 5–10 days. This study investigates the use of watershed-scale snowpack and snowmelt algorithms that are incorporated in two existing watershed water quality models, Generalized Watershed Loading Functions-Variable Source Area (GWLF-VSA) and Soil and Water Assessment Tool (SWAT), to capture the potential effects of climate change on the timing and magnitude of streamflow during the late fall, winter, and early spring for the Catskill Mountain region. The GWLF-VSA model reasonably simulated the recent shifts in the winter streamflow timing, with simulations over the previous 50-year period yielding shifts in WSCV of 2–15 days. The SWAT model yielded similar results as the GWLF-VSA simulations. Scenarios of potential climate change 100 years in the future showed a similar shift in direction of timing winter streamflow, but at a larger magnitude than observed to date with WSCV occurring 15–20 days earlier. Copyright © 2011 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-03-01
    Description: A variety of methods are available to estimate values of meteorological variables at future times and at spatial scales that are appropriate for local climate change impact assessment. One commonly used method is Change Factor Methodology (CFM), sometimes referred to as delta change factor methodology. Although more sophisticated methods exist, CFM is still widely applicable and used in impact analysis studies. While there are a number of different ways by which change factors (CFs) can be calculated and used to estimate future climate scenarios, there are no clear guidelines available in the literature to decide which methodologies are most suitable for different applications. In this study several categories of CFM (additive versus multiplicative and single versus multiple) for a number of climate variables are compared and contrasted. The study employs several theoretical case studies, as well as a real example from Cannonsville watershed, which supplies water to New York City, USA. Results show that in cases when the frequency distribution of Global Climate Model (GCM) baseline climate is close to the frequency distribution of observed climate, or when the frequency distribution of GCM future climate is close to the frequency distribution of GCM baseline climate, additive and multiplicative single CFMs provide comparable results. Two options to guide the choice of CFM are suggested. The first option is a detailed methodological analysis for choosing the most appropriate CFM. The second option is a default method for use under circumstances in which a detailed methodological analysis is too cumbersome.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-07-29
    Description: In this study we evaluate the ability of GCMs participating in the Intergovernmental Panel for Climate Change's (IPCC) Fourth Assessment Report (AR4) to simulate variability in the snow water equivalent (SWE) in New York City Water Supply watersheds located northwest of NYC in the Catskill Mountains. SWE is estimated using an empirical temperature-based degree day model. Inputs to this model are either measured historical meteorological (1961-2000) data or GCM model output for the same historical period. The evaluation of the GCMs is based on a skill score developed using probability distribution functions derived from the time series of simulated snowpack. From the skill scores ( SS ) calculated, the GCMs are ranked based on their ability to simulate the snowpack. These results have implications for selecting a subset of GCM simulations for climate change impact assessments in New York City's water supply. Results show that the GFDL 2.0 (gf001) model has the highest SS (0.93) and CCSM (ncc09) model has the lowest SS (0.26). Based on the SS, the GCM ensemble members are classified into three categories high, medium and low performance. The probability density functions for the three performance classes show the largest between-model variability for models in low performance class. Differences between the means and medians of observation-based model simulation and GCM-based simulation were greatest in the low performance class. Copyright © 2011 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-05-24
    Description: Snow is an important component of the water resources of New York State and the watersheds and reservoirs of New York City (NYC) water supply. In many of the NYC water supply watersheds the hydrologic regimes of high elevation headwaters are linked to streamflow and channel processes in low-elevation stream reaches that serve as inputs to water supply reservoirs. To better simulate this linkage there is a need to understand spatial variations in snowpack and snowmelt. Snowmelt hydrology is an important component of the Soil and Water Assessment Tool (SWAT) model in watersheds where spring runoff is strongly affected by melting snow. This study compares model simulated snowpack and snowmelt at different elevation bands with snow survey data available for the Cannonsville reservoir watershed. Simulations examine the effects of parameterizing the SWAT snowmelt sub-model using 1, 3 and five elevation bands by comparison with measured snow and streamflow. Comparison between measured and simulated snowpack produced correlation coefficients ranging from 0.35 to 0.85. Simulations of both daily and seasonal streamflow, improved when using three elevation bands with r 2 of 0.73 and E NS of 0.72. Streamflow simulations showed slightly lower model performance when basin elevation was assumed to be equal to snow survey site elevation, due to the snow survey sites being somewhat biased toward lower elevations. The effect of climate change was also evaluated and showed that under higher air temperatures in future climate change scenarios, SWAT indicated more precipitation falling as rain, increased and earlier snowmelt and a reduced snowpack leading to a changes in the pattern of streamflow, particularly during winter and early spring. Copyright © 2011 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: The Soil Water Assessment Tool (SWAT) is employed throughout the world to simulate watershed processes. A limitation of this model is that locations of saturation excess overland flow in hilly and mountainous regions with an impermeable layer at shallow depth cannot be simulated realistically. The objective of this research is to overcome this limitation with minor changes in the original SWAT code. The new approach is called SWAT-with-impervious-layers (SWAT-wil). Adaptations consisted of redefining the hillslope length, restricting downward percolation from the root zone, and redefining hydrologic response units (HRUs) such that they are associated with the landscape position. Finally, input parameters were chosen such that overland flow from variable saturated areas (VSAs) corresponds to the variable source interpretation of the Soil Conservation Service (SCS) curve number runoff equation. We tested the model for the Town Brook watershed in the Catskill Mountains. The results showed that the discharge calculated with SWAT-wil agreed with observed outflow and results simulated with the original SWAT and SWAT-hillslope (SWAT-HS) models that had a surface aquifer that transferred water between groups of HRUs. The locations of the periodically saturated runoff areas were predicted by SWAT-wil at the right locations. Current users can utilize the SWAT-wil approach for catchments where VSA hydrology predominates.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-04-13
    Description: This study focuses on the effect of projected changes in rainfall, snow accumulation and snowmelt and consequent changes in the timing of runoff on NYC water supply system storage and operation as simulated by the NYC reservoir system Operational Analysis and Simulation of Integrated Systems (OASIS) model. The Generalized Watershed Loading Functions – Variable Source Area (GWLF-VSA) watershed model is used with future climate scenarios derived from different General Circulation Models (GCMs) to simulate future inflows to reservoirs that are part of the New York City Water Supply System (NYCWSS). Future scenarios that use current system operation rules and demands, but changed reservoir inflows, suggest that changes in precipitation and snowmelt will affect regional water availability on a seasonal basis. The combined effect of projected increases in winter air temperatures, increased winter rain, and earlier snowmelt may result in more runoff during winter. This will lead to reservoir storage levels, water releases and spills to increase during the winter and earlier reservoir refill in the spring. An overall increase in precipitation will result in a reduction in number of days the system is under drought conditions, despite increased evapotranspiration later in the year. Copyright © 2011 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-07-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schneiderman, M -- Davis, D L -- Wagener, D K -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):228-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2374921" target="_blank"〉PubMed〈/a〉
    Keywords: African Americans ; European Continental Ancestry Group ; Female ; Humans ; Lung Neoplasms/mortality ; Male ; Prevalence ; Smoking/*epidemiology ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-04-29
    Description: Rain-on-snow (ROS) runoff events are important hydro-meteorological phenomenon due to their association with flooding. The severity of ROS runoff events depends on the magnitude of the precipitation, air temperature elevation, snow water equivalent, and areal extent of the antecedent snowpack. Examining the consequences of these factors acting together creates challenges for both flood prediction and flood risk assessments. This study provides information on the spatial patterns, and seasonality of rain-on-snow events in New York. We examine the spatial and temporal variability of rain-on-snow events for water years 2004 to 2012 from SNOw Data Assimilation System (SNODAS) products for New York. Liquid and solid precipitation, snow depth, snowmelt, snow water equivalent, maximum and minimum temperature, hydrograph characteristics and annual peak flow are examined. There is significant positive correlation of rain-on-snow days and rain-on-snow triggered events with elevation and negative correlation of these events with increasing air temperature. Our study shows that rain-on-snow events are dominant in high elevation areas of Adirondack and Catskill regions and their distribution varies with month. Cumulative runoffs from rain-on-snow events are generally greater than the rain-only runoff events. The majorities of annual peak flows in the study watersheds are the results of rain-on-snow events and lasted from a few days to many weeks. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-04-29
    Description: Snow is a substantial component of historical annual precipitation in New York City (NYC) water supply watersheds in the Catskill Mountains, and the pattern of snow accumulation and snowmelt has important implications for the management of the reservoirs and watersheds that are part of NYC water supply. NYC currently estimates reservoir basin scale snowpack throughout the snow season by extrapolation from bi-weekly snow survey data. These estimates are complemented by the NOAA SNOw Data Assimilation System (SNODAS) product. Snowpack models are used in short-term projections to support reservoir operations and long-term simulations to evaluate the potential effects of climate change, land use change, and watershed management on the water supply. We tested three snowpack estimation approaches compared with snow survey data: the lumped-parameter temperature-index approach from the Generalized Watershed Loading Function (GWLF) watershed model; a spatially-distributed temperature index (SDTI) model; and the spatially-distributed NOAA SNODAS product. Of the spatially-distributed approaches, SNODAS estimated the spatial variability of SWE among snow survey sites within a basin better than the SDTI model. All three snowpack estimation approaches, including the lumped-parameter GWLF model, performed well in estimating basin-wide SWE for most of the basins studied. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...