ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-11-08
    Description: Permafrost contains an estimated 1672 Pg carbon (C), an amount roughly equivalent to the total currently contained within land plants and the atmosphere. This reservoir of C is vulnerable to decomposition as rising global temperatures cause the permafrost to thaw. During thaw, trapped organic matter may become more accessible for microbial degradation and result in greenhouse gas emissions. Despite recent advances in the use of molecular tools to study permafrost microbial communities, their response to thaw remains unclear. Here we use deep metagenomic sequencing to determine the impact of thaw on microbial phylogenetic and functional genes, and relate these data to measurements of methane emissions. Metagenomics, the direct sequencing of DNA from the environment, allows the examination of whole biochemical pathways and associated processes, as opposed to individual pieces of the metabolic puzzle. Our metagenome analyses reveal that during transition from a frozen to a thawed state there are rapid shifts in many microbial, phylogenetic and functional gene abundances and pathways. After one week of incubation at 5 degrees C, permafrost metagenomes converge to be more similar to each other than while they are frozen. We find that multiple genes involved in cycling of C and nitrogen shift rapidly during thaw. We also construct the first draft genome from a complex soil metagenome, which corresponds to a novel methanogen. Methane previously accumulated in permafrost is released during thaw and subsequently consumed by methanotrophic bacteria. Together these data point towards the importance of rapid cycling of methane and nitrogen in thawing permafrost.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mackelprang, Rachel -- Waldrop, Mark P -- DeAngelis, Kristen M -- David, Maude M -- Chavarria, Krystle L -- Blazewicz, Steven J -- Rubin, Edward M -- Jansson, Janet K -- England -- Nature. 2011 Nov 6;480(7377):368-71. doi: 10.1038/nature10576.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, California State University at Northridge, Northridge, California 91330, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22056985" target="_blank"〉PubMed〈/a〉
    Keywords: Alaska ; Arctic Regions ; Bacteria/*genetics/isolation & purification/*metabolism ; Carbon/metabolism ; Carbon Cycle/genetics ; DNA/analysis/genetics ; *Freezing ; Genes, rRNA/genetics ; Metagenome/*genetics ; *Metagenomics ; Methane/metabolism ; Nitrogen/metabolism ; Nitrogen Cycle/genetics ; Oxidation-Reduction ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; Soil/chemistry ; *Soil Microbiology ; *Temperature ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-06
    Description: Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular 'omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hultman, Jenni -- Waldrop, Mark P -- Mackelprang, Rachel -- David, Maude M -- McFarland, Jack -- Blazewicz, Steven J -- Harden, Jennifer -- Turetsky, Merritt R -- McGuire, A David -- Shah, Manesh B -- VerBerkmoes, Nathan C -- Lee, Lang Ho -- Mavrommatis, Kostas -- Jansson, Janet K -- England -- Nature. 2015 May 14;521(7551):208-12. doi: 10.1038/nature14238. Epub 2015 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, USA. ; US Geological Survey, 345 Middlefield Road, Menlo Park, California 94025, USA. ; 1] Biology Department, 18111 Nordhoff Street, California State University Northridge, Northridge, California 91330, USA [2] US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA. ; Department of Integrative Biology, 50 Stone Road East, University of Guelph, Guelph, Ontario N1G 2W1, Canada. ; US Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, 211A Irving I Building, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA. ; Chemical Sciences Division, One Bethel Valley Road, Building 1059, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6420, USA. ; Graduate School of Genome Science and Technology, University of Tennessee and Oak Ridge National Laboratory, 2510 River Drive, Knoxville, Tennessee 37996, USA. ; US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA. ; 1] Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, USA [2] US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA [3] Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, Berkeley, California 94720, USA [4] Center for Permafrost Research (CENPERM), Department of Biology, Universitetsparken 15, University of Copenhagen, Copenhagen, DK-2100 Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25739499" target="_blank"〉PubMed〈/a〉
    Keywords: Alaska ; Atmosphere/chemistry ; Carbon Cycle ; Climate ; Denitrification ; Freezing ; Genome, Bacterial/*genetics ; Iron/metabolism ; Metagenome/*genetics ; Methane/metabolism ; Microbiota/genetics/*physiology ; Nitrates/metabolism ; Nitrogen/metabolism ; Oxidation-Reduction ; Permafrost/*microbiology ; Phylogeny ; Seasons ; *Soil Microbiology ; Sulfur/metabolism ; Time Factors ; *Wetlands
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The effects of atmospheric nitrogen (N) deposition on organic matter decomposition vary with the biochemical characteristics of plant litter. At the ecosystem-scale, net effects are difficult to predict because various soil organic matter (SOM) fractions may respond differentially. We investigated the relationship between SOM chemistry and microbial activity in three northern deciduous forest ecosystems that have been subjected to experimental N addition for 2 years. Extractable dissolved organic carbon (DOC), DOC aromaticity, C : N ratio, and functional group distribution, measured by Fourier transform infrared spectra (FTIR), were analyzed for litter and SOM. The largest biochemical changes were found in the sugar maple–basswood (SMBW) and black oak–white oak (BOWO) ecosystems. SMBW litter from the N addition treatment had less aromaticity, higher C : N ratios, and lower saturated carbon, lower carbonyl carbon, and higher carboxylates than controls; BOWO litter showed opposite trends, except for carbonyl and carboxylate contents. Litter from the sugar maple–red oak (SMRO) ecosystem had a lower C : N ratio, but no change in DOC aromaticity. For SOM, the C : N ratio increased with N addition in SMBW and SMRO ecosystems, but decreased in BOWO; N addition did not affect the aromaticity of DOC extracted from mineral soil. All ecosystems showed increases in extractable DOC from both litter and soil in response to N treatment. The biochemical changes are consistent with the divergent microbial responses observed in these systems. Extracellular oxidative enzyme activity has declined in the BOWO and SMRO ecosystems while activity in the SMBW ecosystem, particularly in the litter horizon, has increased. In all systems, enzyme activities associated with the hydrolysis and oxidation of polysaccharides have increased. At the ecosystem scale, the biochemical characteristics of the dominant litter appear to modulate the effects of N deposition on organic matter dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-12-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-10
    Description: Approximately 1700 Pg of soil carbon (C) are stored in the northern circumpolar permafrost zone, more than twice as much C than in the atmosphere. The overall amount, rate, and form of C released to the atmosphere in a warmer world will influence the strength of the permafrost C feedback to climate change. We used a survey to quantify variability in the perception of the vulnerability of permafrost C to climate change. Experts were asked to provide quantitative estimates of permafrost change in response to four scenarios of warming. For the highest warming scenario (RCP 8.5), experts hypothesized that C release from permafrost zone soils could be 19–45 Pg C by 2040, 162–288 Pg C by 2100, and 381–616 Pg C by 2300 in CO2 equivalent using 100-year CH4 global warming potential (GWP). These values become 50 % larger using 20-year CH4 GWP, with a third to a half of expected climate forcing coming from CH4 even though CH4 was only 2.3 % of the expected C release. Experts projected that two-thirds of this release could be avoided under the lowest warming scenario (RCP 2.6). These results highlight the potential risk from permafrost thaw and serve to frame a hypothesis about the magnitude of this feedback to climate change. However, the level of emissions proposed here are unlikely to overshadow the impact of fossil fuel burning, which will continue to be the main source of C emissions and climate forcing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-03-19
    Description: Select coastal regions of the North Slope of Alaska are experiencing high erosion rates that can be attributed in part to recent warming trends and associated increased storm intensity and frequency. The upper sediment column of the coastal North Slope of Alaska can be described as continuous permafrost underlying a thin (typically less than 1–2 m) active layer that responds variably to seasonal thaw cycles. Assessing the temporal and spatial variability of the active layer and underlying permafrost is essential to better constrain how heightened erosion may impact material fluxes to the atmosphere and the coastal ocean, and how enhanced thaw cycles may impact the stability of the coastal bluffs. In this study, multi-channel electrical resistivity tomography (ERT) was used to image shallow subsurface features of a coastal bluff west of Kaktovik, on Barter Island, northeast Alaska. A comparison of a suite of paired resistivity surveys conducted in early and late summer 2014 provided detailed information on how the active layer and permafrost are impacted during the short Arctic summer. Such results are useful in the development of coastal resilience models that tie together fluvial, terrestrial, climatic, geologic, and oceanographic forcings on shoreline stability.
    Print ISSN: 1083-1363
    Electronic ISSN: 1943-2658
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-10-24
    Print ISSN: 0095-3628
    Electronic ISSN: 1432-184X
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-08-15
    Print ISSN: 0095-3628
    Electronic ISSN: 1432-184X
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-07-01
    Print ISSN: 0361-5995
    Electronic ISSN: 1435-0661
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...