ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2016-08-06
    Description: Accidental discharges of the hazardous nuclear fission products 137 Cs + and 90 Sr 2+ into the environment, such as during the Fukushima Dai-ichi nuclear accident, have occurred repeatedly throughout the ‘nuclear age.’ Numerous studies of the fate and transport of 137 Cs + and 90 Sr 2+ in soils and sediments have demonstrated their strong and selective binding to phyllosilicate clay minerals, primarily by means of cation exchange into interlayer sites. The locally concentrated amounts of these radioactive beta-emitters that can be found in these host minerals raise important questions regarding the long-term interplay and durability of radioisotope–clay associations, which is not well known. The present study goes beyond the usual short-term focus to address the permanence of radioisotope retention in clay minerals, by developing a general theoretical understanding of their resistance to the creation of defects. The present study reports ab initio molecular dynamics (AIMD) calculations of the threshold displacement energy (TDE) of each symmetry-unique atomic species comprising the unit cell of model vermiculite. The TDE values determined are material specific, radiation independent, and can be used to estimate the probability of Frenkel-pair creation by direct electron–ion collision, as could be induced by the passage of a high-energy electron emitted during the beta-decay of 137 Cs, 90 Sr, and daughter 90 Y. For 137 Cs and 90 Sr, the calculated probability is ~36%, while for 90 Y the probability is much greater at ~89%. The long-term retention picture that emerges is that decay will progressively alter the clay interlayer structure and charge, probably leading to delamination of the clay, and re-release of residual parent isotopes. Further work examining the effect of Frenkel defect accumulation on the binding energy of parent and daughter radionuclides in the interlayer is thus justified and potentially important for accurate long-term forecasting of radionuclide transport in the environment.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-25
    Description: Nature Geoscience 9, 29 (2016). doi:10.1038/ngeo2581 Authors: Shang-Ping Xie, Yu Kosaka & Yuko M. Okumura The Earth’s energy budget for the past four decades can now be closed, and it supports anthropogenic greenhouse forcing as the cause for climate warming. However, closure depends on invoking an unrealistically large increase in aerosol cooling during the so-called global warming hiatus since the late 1990s (refs ,) that was due partly to tropical Pacific Ocean cooling. The difficulty with this closure lies in the assumption that the same climate feedback applies to both anthropogenic warming and natural cooling. Here we analyse climate model simulations with and without anthropogenic increases in greenhouse gas concentrations, and show that top-of-the-atmosphere radiation and global mean surface temperature are much less tightly coupled for natural decadal variability than for the greenhouse-gas-induced response, implying distinct climate feedback between anthropogenic warming and natural variability. In addition, we identify a phase difference between top-of-the-atmosphere radiation and global mean surface temperature such that ocean heat uptake tends to slow down during the surface warming hiatus. This result deviates from existing energy theory but we find that it is broadly consistent with observations. Our study highlights the importance of developing metrics that distinguish anthropogenic change from natural variations to attribute climate variability and to estimate climate sensitivity from observations.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Journal of Climate, Ahead of Print. 〈br/〉
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-03-10
    Description: Author(s): M. Okumura, S. Yamada, M. Machida, and H. Aoki We consider repulsively interacting, cold fermionic atoms loaded on an optical ladder lattice in a trapping potential. The density-matrix renormalization-group method is used to numerically calculate the ground state for systematically varied values of interaction U and spin imbalance p in the Hubba... [Phys. Rev. A 83, 031606] Published Wed Mar 09, 2011
    Keywords: Matter waves and collective properties of cold atoms and molecules
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-04-20
    Description: Coalescence of liquid drops is a daily phenomenon familiar to everybody and is related to many fields from biology to astronomy and also related to a variety of practical problems in industry. However, the detailed physical understanding of the dynamics has been revealed only recently with the aid of high-speed camera, high-performance computer, and scaling analysis. In this study, coalescence of a viscous drop to a bath of the same liquid is studied in a confined space. This is because dealing with a small amount of liquid drops becomes increasingly important (e.g., in industrial and biological applications). Here, the aqueous drop and bath are surrounded by low-viscosity oil and sandwiched by two parallel plates of the cell. We quantify experimentally the width of a neck that bridges the drop and the bath during coalescence. As a result, we find that the neck width increases linearly with time at short times, but the dynamics slows down significantly at longer times. Thanks to simple and original scaling arguments, we clearly show that this transition of the dynamics with time in a single coalescence event is brought about by a crossover from a three-dimensional viscous dynamics for a spherical drop to a quasi two-dimensional one for a disk drop. In addition, we report an unusual type of coalescence that is possibly caused by naturally accumulated electric charge in the confined geometry and whose dynamics seems self-similar.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1992-11-20
    Description: Chlorine nitrate photolysis has been investigated with the use of a molecular beam technique. Excitation at both 248 and 193 nanometers led to photodissociation by two pathways, CIONO(2) --〉 CIO + NO()2 and CIONO(2) --〉 Cl + NO3, with comparable yields. This experiment provides a direct measurement of the CIO product channel and consequently raises the possibility of an analogous channel in CIO dimer photolysis. Photodissociation of the CIO dimer is a critical step in the catalytic cycle that is presumed to dominate polar stratospheric ozone destruction. A substantial yield of CIO would reduce the efficiency of this cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Minton, T K -- Nelson, C M -- Moore, T A -- Okumura, M -- New York, N.Y. -- Science. 1992 Nov 20;258(5086):1342-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17778361" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-10-30
    Description: The reaction of OH and NO(2) to form gaseous nitric acid (HONO(2)) is among the most influential in atmospheric chemistry. Despite its importance, the rate coefficient remains poorly determined under tropospheric conditions because of difficulties in making laboratory rate measurements in air at 760 torr and uncertainties about a secondary channel producing peroxynitrous acid (HOONO). We combined two sensitive laser spectroscopy techniques to measure the overall rate of both channels and the partitioning between them at 25 degrees C and 760 torr. The result is a significantly more precise value of the rate constant for the HONO(2) formation channel, 9.2 (+/-0.4) x 10(-12) cm(3) molecule(-1) s(-1) (1 SD) at 760 torr of air, which lies toward the lower end of the previously established range. We demonstrate the impact of the revised value on photochemical model predictions of ozone concentrations in the Los Angeles airshed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mollner, Andrew K -- Valluvadasan, Sivakumaran -- Feng, Lin -- Sprague, Matthew K -- Okumura, Mitchio -- Milligan, Daniel B -- Bloss, William J -- Sander, Stanley P -- Martien, Philip T -- Harley, Robert A -- McCoy, Anne B -- Carter, William P L -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):646-9. doi: 10.1126/science.1193030.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030650" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-11-16
    Description: Global mean sea surface temperature (SST) has risen steadily over the past century, but the overall pattern contains extensive and often uncertain spatial variations, with potentially important effects on regional precipitation. Observations suggest a slowdown of the zonal atmospheric overturning circulation above the tropical Pacific Ocean (the Walker circulation) over the twentieth century. Although this change has been attributed to a muted hydrological cycle forced by global warming, the effect of SST warming patterns has not been explored and quantified. Here we perform experiments using an atmospheric model, and find that SST warming patterns are the main cause of the weakened Walker circulation over the past six decades (1950-2009). The SST trend reconstructed from bucket-sampled SST and night-time marine surface air temperature features a reduced zonal gradient in the tropical Indo-Pacific Ocean, a change consistent with subsurface temperature observations. Model experiments with this trend pattern robustly simulate the observed changes, including the Walker circulation slowdown and the eastward shift of atmospheric convection from the Indonesian maritime continent to the central tropical Pacific. Our results cannot establish whether the observed changes are due to natural variability or anthropogenic global warming, but they do show that the observed slowdown in the Walker circulation is presumably driven by oceanic rather than atmospheric processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tokinaga, Hiroki -- Xie, Shang-Ping -- Deser, Clara -- Kosaka, Yu -- Okumura, Yuko M -- England -- Nature. 2012 Nov 15;491(7424):439-43. doi: 10.1038/nature11576.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉International Pacific Research Center, Department of Meteorology, SOEST, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23151588" target="_blank"〉PubMed〈/a〉
    Keywords: *Air Movements ; Global Warming ; *Models, Theoretical ; *Oceans and Seas ; *Temperature ; *Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-04-12
    Description: Temperature is an unavoidable environmental cue that affects the metabolism and behavior of any creature on Earth, yet how animals perceive temperature is poorly understood. The nematode Caenorhabditis elegans "memorizes" temperatures, and this stored information modifies its subsequent migration along a temperature gradient. We show that the olfactory neuron designated AWC senses temperature. Calcium imaging revealed that AWC responds to temperature changes and that response thresholds differ depending on the temperature to which the animal was previously exposed. In the mutant with impaired heterotrimeric guanine nucleotide-binding protein (G protein)-mediated signaling, AWC was hyperresponsive to temperature, whereas the AIY interneuron (which is postsynaptic to AWC) was hyporesponsive to temperature. Thus, temperature sensation exhibits a robust influence on a neural circuit controlling a memory-regulated behavior.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuhara, Atsushi -- Okumura, Masatoshi -- Kimata, Tsubasa -- Tanizawa, Yoshinori -- Takano, Ryo -- Kimura, Koutarou D -- Inada, Hitoshi -- Matsumoto, Kunihiro -- Mori, Ikue -- New York, N.Y. -- Science. 2008 May 9;320(5877):803-7. doi: 10.1126/science.1148922. Epub 2008 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Group of Molecular Neurobiology, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403676" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*physiology ; Caenorhabditis elegans Proteins/genetics/physiology ; Calcium/metabolism ; GTP-Binding Protein Regulators/genetics/physiology ; GTP-Binding Proteins/genetics/metabolism ; Olfactory Pathways/physiology ; Olfactory Receptor Neurons/*physiology ; Signal Transduction ; Thermosensing/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-02-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okumura, Mitchio -- New York, N.Y. -- Science. 2015 Feb 13;347(6223):718-9. doi: 10.1126/science.aaa5506.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, USA. mo@caltech.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25678647" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...