ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2007-03-31
    Description: Plate tectonic processes introduce basaltic crust (as eclogite) into the peridotitic mantle. The proportions of these two sources in mantle melts are poorly understood. Silica-rich melts formed from eclogite react with peridotite, converting it to olivine-free pyroxenite. Partial melts of this hybrid pyroxenite are higher in nickel and silicon but poorer in manganese, calcium, and magnesium than melts of peridotite. Olivine phenocrysts' compositions record these differences and were used to quantify the contributions of pyroxenite-derived melts in mid-ocean ridge basalts (10 to 30%), ocean island and continental basalts (many 〉60%), and komatiites (20 to 30%). These results imply involvement of 2 to 20% (up to 28%) of recycled crust in mantle melting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sobolev, Alexander V -- Hofmann, Albrecht W -- Kuzmin, Dmitry V -- Yaxley, Gregory M -- Arndt, Nicholas T -- Chung, Sun-Lin -- Danyushevsky, Leonid V -- Elliott, Tim -- Frey, Frederick A -- Garcia, Michael O -- Gurenko, Andrey A -- Kamenetsky, Vadim S -- Kerr, Andrew C -- Krivolutskaya, Nadezhda A -- Matvienkov, Vladimir V -- Nikogosian, Igor K -- Rocholl, Alexander -- Sigurdsson, Ingvar A -- Sushchevskaya, Nadezhda M -- Teklay, Mengist -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):412-7. Epub 2007 Mar 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute (MPI) for Chemistry, Post Office Box 3060, 55020 Mainz, Germany. sobolev@geokhi.ru〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17395795" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-11
    Description: The order Spiriferinida represented a significant group whose extinction is linked to the early Toarcian mass extinction event. The genus Cisnerospira Manceñido, 2004, conspicuous representative of this group in the Early Jurassic of the western Tethys, is analyzed from a systematic standpoint, grounded mainly on evidence from the Subbetic domain, and its initial diagnosis is revised accordingly. A definitive suprageneric position within the subfamily Paralaballinae is formally proposed in the light of new data herein provided. Both external and internal diagnostic features and the generic and intraspecific variability are described through the analysis of the Cisnerospira species recorded in the easternmost Subbetic area, i.e., Cisnerospira adscendens (Deslongchamps, 1858) , C . aff. adscendens, C. angulata (Oppel, 1861), and C. ? sylvia (Gemmellaro , 1882). In addition, their interrelation with other records from several Tethyan basins is addressed, and the generic spectrum has been extended to include several species with high morphological affinity. This characterization thus contributes to clarify certain ambiguities in the systematics of the spiriferinids, which entails a complex taxonomy mainly based on the external features, where the ribbing pattern was given foremost classificatory value due to the lack of more reliable generic diagnostic criteria. Furthemore, a morphofunctional analysis performed in Cisnerospira reveals a presumable epibenthonic libero-sessile way of life, and two alternative adaptive strategies are discussed: resting on and/or sticking in substrates with different degree of consolidation, providing a significant hydrodynamic stability to the shell.
    Print ISSN: 0022-3360
    Electronic ISSN: 1937-2337
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 330 (1987), S. 216-220 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Strontium, neodymium and lead isotopic data for samples from five volcanoes of the Maui Volcanic Complex, Hawaii, span nearly the total compositional range previously recognized for the Hawaiian islands. These data reveal a systematic compositional continuum for Hawaiian tholeiites which is ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 335 (1988), S. 532-535 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Two hydrothermal fields were found in 1987 on the upper portion of Loihi's south rift zone. Both fields are located on the eastern flanks of prominent pillow lava cones (Figs 1 and 2). Lavas from the venting areas are brecciated and strongly vesicular (20-35 volume per cent). The lavas from the ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Puu Oo eruption of Kilauea Volcano in Hawaii is one of its largest and most compositionally varied historical eruptions. The mineral and whole-rock compositions of the Puu Oo lavas indicate that there were three compositionally distinct magmas involved in the eruption. Two of these magmas were differentiated (〈6.8 wt% MgO) and were apparently stored in the rift zone prior to the eruption. A third, more mafic magma (9–10 wt% MgO) was probably intruded as a dike from Kilauea's summit reservoir just before the start of the eruption. Its intrusion forced the other two magmas to mix, forming a hybrid that erupted during the first three eruptive episodes from a fissure system of vents. A new hybrid was erupted during episode 3 from the vent where Puu Oo later formed. The composition of the lava erupted from this vent became progressively more mafic over the next 21 months, although significant compositional variation occurred within some eruptive episodes. The intra-episode compositional variation was probably due to crystal fractionation in the shallow (0.0–2.9 km), dike-shaped (i.e. high surface area/volume ratio) and open-topped Puu Oo magma reservoir. The long-term compositional variation was controlled largely by mixing the early hybrid with the later, more mafic magma. The percentage of mafic magma in the erupted lava increased progressively to 100% by episode 30 (about two years after the eruption started). Three separate magma reservoirs were involved in the Puu Oo eruption. The two deeper reservoirs (3–4 km) recharged the shallow (0.4–2.9 km) Puu Oo reservoir. Recharge of the shallow reservoir occurred rapidly during an eruption indicating that these reservoirs were well connected. The connection with the early hybrid magma body was cut off before episode 30. Subsequently, only mafic magma from the summit reservoir has recharged the Puu Oo reservoir.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0819
    Keywords: Key words Koolau Volcano ; Hawaiian shield lavas ; Igneous geochemistry ; Recycling of oceanic crust
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A 200-m section of Koolau basalt was sampled in the 1.6-km Trans-Koolau (T–K) tunnel. The section includes 126 aa and pahoehoe lava flows, five dikes and ten thin ash units. This volcanic section and the physical characteristics of the lava flows indicate derivation from the nearby northwest rift zone of the Koolau shield. The top of the section is inferred to be 500–600 m below the pre-erosional surface of the Koolau shield. Therefore, compared with previously studied Koolau lavas, this section provides a deeper, presumably older, sampling of the shield. Shield lavas from Koolau Volcano define a geochemical end-member for Hawaiian shields. Most of the tunnel lavas have the distinctive major and trace element abundance features (e.g. relatively high SiO2 content and Zr/Nb abundance ratio) that characterize Koolau lavas. In addition, relative to the recent shield lavas erupted at Kilauea and Mauna Loa volcanoes, most Koolau lavas have lower abundances of Sc, Y and Yb at a given MgO content; this result is consistent with a more important role for residual garnet during the partial melting processes that created Koolau shield lavas. Koolau lavas with the strongest residual garnet signature have relatively high 87Sr/86Sr, 187Os/188Os, 18O/16O, and low 143Nd/144Nd. These isotopic characteristics have been previously interpreted to reflect a source component of recycled oceanic crust that was recrystallized to garnet pyroxenite. This component also has high La/Nb and relatively low 206Pb/204Pb, geochemical characteristics which are attributed to ancient pelagic sediment in the recycled crust. Although most Koolau lavas define a geochemical endmember for Hawaiian shield lavas, there is considerable intrashield geochemical variability that is inferred to reflect source characteristics. The oldest T–K tunnel lava flow is an example. It has the lowest 87Sr/86Sr, Zr/Nb and La/Nb, and the highest 143Nd/144Nd ratio found in Koolau lavas. In most respects it is similar to lavas from Kilauea Volcano. Therefore, the geochemical characteristics of the Koolau shield, which define an end member for Hawaiian shields, reflect an important role for recycled oceanic crust, but the proportion of this crust in the source varied during growth of the Koolau shield.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 112 (1992), S. 520-542 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Lanai is the third smallest of the fifteen principal subaerial shield volcanoes of the Hawaiian hotspot. This volcano apparently became extinct during the shield-building stage of volcanism, as shown by the absence of both alkalic cap and post-erosional lavas. Major and trace element analyses of 22 new samples collected primarily from 3 stratigraphic sections show that Lanai tholeiites span a large range in composition. Some Lanai lavas are unique geochemically among Hawaiian tholeiites in having the lowest abundances of incompatible trace elements of any Hawaiian lavas and well-developed positive Eu anomalies. The geochemical characteristics of these low-abundance Lanai tholeiites are not the result of alteration, differences in mantle source modal mineralogy, the presence of residual accessory mantle phases or fractional crystallization of such phases, assimilation of depleted [MORB] wall-rock, or accumulation/resorption of phenocrysts or xenocrysts. Incompatible trace element ratios (e.g., Nb/La, Nb/Th, La/Th, La/Hf, Ce/Pb) in Lanai tholeiites span considerable ranges and form coherent trends with each other and with absolute abundances of these elements. Large variations in La/Sm, La/Yb, and absolute REE abundances at constant MgO suggest that Lanai tholeiites formed by variable amounts of partial melting. However, large ranges in incompatible element ratios cannot be explained solely by variations in partial melting of a geochemically homogeneous source, but must reflect geochemical heterogeneities in the Lanai source. Partial melting modeling indicates that the mixed Lanai source is probably LREE-enriched [i.e., (La/Yb)CN〉1]. One component in the Lanai source, exemplified by the low-abundance tholeiites, has markedly lower REE/HFSE, Th/HFSE, alkali/HFSE, and Ce/Pb ratios than other Lanai or Hawaiian tholeiites and may indicate the presence of recycled residual subduction zone materials in the Hawaiian plume source. The positive Eu anomalies that characterize the low-abundance Lanai tholeiites are not the result of plagioclase accumulation or assimilation but are a feature of this source component. Progressive temporal geochemical variations in Lanai tholeiites from 2 stratigraphic sections indicate that the source composition of these lavas probably evolved over time. This change could have resulted from a progressive decrease in the extent of partial melting of the Lanai source. The compositional variability of Lanai tholeiites suggests that geochemical heterogeneities in their source are larger than the scale of partial melting. Lanai tholeiites could not have formed by smaller degrees of partial melting of plume material than did the larger-volume Hawaiian shields. Therefore, volume differences between Hawaiian shields must be controlled primarily by differences in the volume of supplied plume material rather than by differences in the degree of partial melting. The premature cessation of eruptive activity at Lanai may be attributed to relatively large degrees of partial melting of a small plume.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 100 (1988), S. 383-397 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Most Hawaiian basaltic shield volcanoes are capped by moderately to strongly evolved alkalic lavas (MgO〈4.5 wt.%). On Mauna Kea Volcano the cap is dominantly composed of hawaiite with minor mugearite. Although these lavas contain dunite and gabbroic xenoliths, they are nearly aphyric with rare olivine and plagioclase phenocrysts and xenocrysts. The hawaiites are nearly homogeneous in radiogenic isotope ratios (Sr, Nd, Pb) and they define coherent major and trace element abundance trends. These compositional trends are consistent with segregation of a plagioclase-rich cumulate containing significant clinopyroxene and Fe-Ti oxides plus minor olivine. Elements which are usually highly incompatible, e.g., Rb, Ba, Nb, are only moderately incompatible within the hawaiite suite because these elements are incorporated into feldspar (Rb, Ba) and oxides (Nb). However, in the most evolved lavas abundances of the most incompatible elements (P, La, Ce, Th) exceed (by ∼5–10%) the maximum enrichments expected from models based on major elements. Apparently, the crystal fractionation process was more complex than simple, closed system fractionation. The large amounts of clinopyroxene in the fractionating assemblage and the presence of dense dunite xenoliths with CO2 inclusions formed at minimum pressures of 2 kb are consistent with fractionation occurring at moderate depths. Crystal segregation along conduit or magma chamber walls is a possible mechanism for explaining compositional variations within these alkalic cap lavas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Kahoolawe shield volcano produced precaldera and caldera-filling tholeiites and mildly alkalic post-caldera lavas that petrographically and compositionally resemble such lavas from other Hawaiian shield volcanoes. However, Kahoolawe tholeiites display wide ranges in incompatible trace element ratios (e.g., Nb/Th=9–24, Th/Ta=0.6–1.3), 87Sr/86Sr (0.70379–0.70440), 143Nd/144Nd (0.51273–0.51298), and 206Pb/204Pb (17.92–18.37). The isotopic variation exceeds that at any other Hawaiian shield volcano, and spans about half the range for all Hawaiian tholeiites. Quasi-cyclic temporal evolution of Kahoolawe tholeiites is consistent with combined fractional crystallization and periodic recharge by primitive magmas. Ratios of highly incompatible trace elements and Sr, Nd, and Pb isotopic ratios from coherent sub-trends that reflect recurrent interactions between variably evolved magmas and two other mantle components whose compositions are constrained by intersections between these trends. The most MgO-rich Kahoolawe tholeiites are partial melts of a high Nb/Th (∼23.5) ascending plume, possibly comprising ancient subducted oceanic lithosphere. Slightly evolved tholeiites experienced combined crystal fractionation and assimilation (AFC) of material derived from a distinct reservoir (Nb/Th ∼9) of asthenospheric derivation. The most evolved tholeiites display compositional shifts toward a third component, having mid ocean ridge basalt-like isotopic ratios but enriched OIB-like trace element ratios, representing part of the lithospheric mantle (or melts thereof). Periodic recurrence of all three magma variants suggests that eruptions may have tapped coeval reservoirs distributed over a large depth range. Kahoolawe provides new evidence concerning the nature of the Hawaiian plume, the distribution of compositional heterogeneities in the suboeanic mantle, and the processes by which Hawaiian tholeiites form and evolve.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 106 (1991), S. 183-200 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Previous studies of alkalic lavas erupted during the waning growth stages (〈0.9 Ma to present) of Haleakala volcano identified systematic temporal changes in isotopic and incompatible element abundance ratios. These geochemical trends reflect a mantle mixing process with a systematic change in the proportions of mixing components. We studied lavas from a 250-m-thick stratigraphic sequence in Honomanu Gulch that includes the oldest (∼1.1 Ma) subaerial basalts exposed at Haleakaka. The lower 200 m of section is intercalated tholeiitic and alkalic basalt with similar isotopic (Sr, Nd, Pb) and incompatible element abundance ratios (e.g., Nb/La, La/Ce, La/Sr, Hf/Sm, Ti/Eu). These lava compositions are consistent with derivation of alkalic and tholeiitic basalt by partial melting of a compositionally homogeneous, clinopyroxene-rich, garnet lherzolite source. The intercalated tholeiitic and alkalic Honomanu lavas may reflect a process which tapped melts generated in different portions of a rising plume, and we infer that the tholeiitic lavas reflect a melting range of ∼10% to 15%, while the intercalated alkalic lavas reflect a range of ∼6.5% to 8% melting. However, within the uppermost 50 m of section. 87Sr/86Sr decreases from 0.70371 to 0.70328 as eruption age decreased from ∼0.97 Ma to 0.78 Ma. We infer that as lava compositions changed from intercalated tholeiitic and alkalic lavas to only alkalic lavas at ∼0.93 Ma, the mixing proportions of source components changed with a MORB-related mantle component becoming increasingly important as eruption age decreased.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...