ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    American Association for the Advancement of Science (AAAS)
    Publikationsdatum: 2003-03-29
    Beschreibung: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farquhar, Graham D -- Roderick, Michael L -- New York, N.Y. -- Science. 2003 Mar 28;299(5615):1997-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cooperative Research Centre for Greenhouse Accounting, Research School of Biological Sciences, Institute of Advanced Studies, Australian National University, Canberra ACT 0200, Australia. michael.roderick@anu.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12663904" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): *Atmosphere ; *Carbon Dioxide/metabolism ; Climate ; Philippines ; *Photosynthesis ; Scattering, Radiation ; Sunlight ; Temperature ; Trees/*metabolism ; *Volcanic Eruptions
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    American Association for the Advancement of Science (AAAS)
    Publikationsdatum: 2002-11-16
    Beschreibung: Changes in the global water cycle can cause major environmental and socioeconomic impacts. As the average global temperature increases, it is generally expected that the air will become drier and that evaporation from terrestrial water bodies will increase. Paradoxically, terrestrial observations over the past 50 years show the reverse. Here, we show that the decrease in evaporation is consistent with what one would expect from the observed large and widespread decreases in sunlight resulting from increasing cloud coverage and aerosol concentration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roderick, Michael L -- Farquhar, Graham D -- New York, N.Y. -- Science. 2002 Nov 15;298(5597):1410-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cooperative Research Centre for Greenhouse Accounting, Research School of Biological Sciences, Institute of Advanced Studies, Australian National University, Canberra ACT 0200, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12434057" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2012-11-16
    Beschreibung: Drought is expected to increase in frequency and severity in the future as a result of climate change, mainly as a consequence of decreases in regional precipitation but also because of increasing evaporation driven by global warming. Previous assessments of historic changes in drought over the late twentieth and early twenty-first centuries indicate that this may already be happening globally. In particular, calculations of the Palmer Drought Severity Index (PDSI) show a decrease in moisture globally since the 1970s with a commensurate increase in the area in drought that is attributed, in part, to global warming. The simplicity of the PDSI, which is calculated from a simple water-balance model forced by monthly precipitation and temperature data, makes it an attractive tool in large-scale drought assessments, but may give biased results in the context of climate change. Here we show that the previously reported increase in global drought is overestimated because the PDSI uses a simplified model of potential evaporation that responds only to changes in temperature and thus responds incorrectly to global warming in recent decades. More realistic calculations, based on the underlying physical principles that take into account changes in available energy, humidity and wind speed, suggest that there has been little change in drought over the past 60 years. The results have implications for how we interpret the impact of global warming on the hydrological cycle and its extremes, and may help to explain why palaeoclimate drought reconstructions based on tree-ring data diverge from the PDSI-based drought record in recent years.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheffield, Justin -- Wood, Eric F -- Roderick, Michael L -- England -- Nature. 2012 Nov 15;491(7424):435-8. doi: 10.1038/nature11575.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, USA. justin@princeton.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23151587" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Droughts/*statistics & numerical data ; *Global Warming ; *Models, Theoretical ; Temperature ; Time Factors
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    American Association for the Advancement of Science (AAAS)
    Publikationsdatum: 2012-06-09
    Beschreibung: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roderick, Michael L -- Sun, Fubao -- Farquhar, Graham D -- New York, N.Y. -- Science. 2012 Jun 8;336(6086):1230-1. doi: 10.1126/science.336.6086.1230-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22679080" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2000-04-01
    Print ISSN: 0269-8463
    Digitale ISSN: 1365-2435
    Thema: Biologie
    Publiziert von Wiley im Namen von British Ecological Society.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2014-09-09
    Beschreibung: Terrestrial vegetation dynamics are closely influenced by both climate and by both climate and by land use and/or land cover change (LULCC) caused by human activities. Both can change over time in a monotonic way and it can be difficult to separate the effects of climate change from LULCC on vegetation. Here we attempt to attribute trends in the fractional green vegetation cover to climate variability and to human activity in Ejina Region, a hyper-arid landlocked region in northwest China. This region is dominated by extensive deserts with relatively small areas of irrigation located along the major water courses as is typical throughout much of Central Asia. Variations of fractional vegetation cover from 2000 to 2012 were determined using Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index data with 250 m spatial resolution over 16-day intervals. We found that the fractional vegetation cover in this hyper-arid region is very low but that the mean growing season vegetation cover has increased from 3.4% in 2000 to 4.5% in 2012. The largest contribution to the overall greening was due to changes in green vegetation cover of the extensive desert areas with a smaller contribution due to changes in the area of irrigated land. Comprehensive analysis with different precipitation data sources found that the greening of the desert was associated with increases in regional precipitation. We further report that the area of land irrigated each year can be predicted using the runoff gauged 1 year earlier. Taken together, water availability both from precipitation in the desert and runoff inflow for the irrigation agricultural lands can explain at least 52% of the total variance in regional vegetation cover from 2000 to 2010. The results demonstrate that it is possible to separate the satellite-observed changes in green vegetation cover into components due to climate and human modifications. Such results inform management on the implications for water allocation between oases in the middle and lower reaches and for water management in the Ejina oasis.
    Print ISSN: 1027-5606
    Digitale ISSN: 1607-7938
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2014-01-06
    Beschreibung: General experience in hydrologic modelling suggests that the parameterisation of a model changes over different time and space scales. As a result, hydrologists often re-parameterise their models whenever different temporal or spatial resolutions are required. Here, we investigate theoretical aspects of this issue in a search for the cause(s) of the need for re-parameterisations. Based on Taylor series expansion, we present a mathematical approach for temporal up-scaling that involves covariance-based corrections. We apply the theory using a unique database of half-hourly pan evaporation measurements (comprising 237 days) and examine how the model parameters change when integrating from half-hour to daily and then monthly integration periods. We show that the model parameters change over different integration periods because of changes in the covariance between the model variables. In our model system, we find that the covariance-based correction is highly variable from day to day but settles down to a reasonably constant value over periods longer than about 15 days. The 15 days timescale is likely to be specific to our model system, nonetheless the underlying principle that there is a characteristic timescale for the covariance-based scaling correction of a particular hydrologic process might be general. If that proved true it would open up the possibility of systematically searching for characteristic integration periods for the key covariance-based scaling terms in other key hydrologic processes. That would in turn enable the development of more generalised hydrologic closure scheme(s).
    Print ISSN: 1027-5606
    Digitale ISSN: 1607-7938
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2014-05-06
    Beschreibung: Climate models project increases in globally averaged atmospheric specific humidity that are close to the Clausius–Clapeyron (CC) value of around 7% K−1 whilst projections for mean annual global precipitation (P) and evaporation (E) are somewhat muted at around 2% K−1. Such global projections are useful summaries but do not provide guidance at local (grid box) scales where impacts occur. To bridge that gap in spatial scale, previous research has shown that the "wet get wetter and dry get drier" relation, Δ(P − E) ∝ P − E, follows CC scaling when the projected changes are averaged over latitudinal zones. Much of the research on projected climate impacts has been based on an implicit assumption that this CC relation also holds at local (grid box) scales but this has not previously been examined. In this paper we find that the simple latitudinal average CC scaling relation does not hold at local (grid box) scales over either ocean or land. This means that in terms of P − E, the climate models do not project that the "wet get wetter and dry get drier" at the local scales that are relevant for agricultural, ecological and hydrologic impacts. In an attempt to develop a simple framework for local-scale analysis we found that the climate model output shows a remarkably close relation to the long-standing Budyko framework of catchment hydrology. We subsequently use the Budyko curve and find that the local-scale changes in P − E projected by climate models are dominated by changes in P while the changes in net irradiance at the surface due to greenhouse forcing are small and only play a minor role in changing the mean annual P − E in the climate model projections. To further understand the apparently small changes in net irradiance we also examine projections of key surface energy balance terms. In terms of global averages, we find that the climate model projections are dominated by changes in only three terms of the surface energy balance: (1) an increase in the incoming long-wave irradiance, and the respective responses (2) in outgoing long-wave irradiance and (3) in the evaporative flux, with the latter change being much smaller than the former two terms and mostly restricted to the oceans. The small fraction of the realised surface forcing that is partitioned into E explains why the hydrologic sensitivity (2% K−1) is so much smaller than CC scaling (7% K−1). Much public and scientific perception about changes in the water cycle has been based on the notion that temperature enhances E. That notion is partly true but has proved an unfortunate starting point because it has led to misleading conclusions about the impacts of climate change on the water cycle. A better general understanding of the potential impacts of climate change on water availability that are projected by climate models will surely be gained by starting with the notion that the greater the enhancement of E, the less the surface temperature increase (and vice versa). That latter notion is based on the conservation of energy and is an underlying basis of climate model projections.
    Print ISSN: 1027-5606
    Digitale ISSN: 1607-7938
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2007-03-13
    Beschreibung: The Budyko curve describes the patterns observed between between climate, evapotranspiration and run-off and has proven to be a useful model for predicting catchment energy and water balances. In this paper we review the Budyko curve's underlying framework and, based on the literature, present an argument for why it is important to include vegetation dynamics into the framework for some purposes. The Budyko framework assumes catchments are at steady-state and are driven by the macro-climate, two conditions dependent on the scales of application, such that the framework's reliability is greatest when applied using long-term averages (≫1 year) and to large catchments (〉10 000 km2). At these scales previous experience has shown that the hydrological role of vegetation does not need to be explicitly considered within the framework. By demonstrating how dynamics in the leaf area, photosynthetic capacity and rooting depth of vegetation affect not only annual and seasonal vegetation water use, but also steady-state conditions, we argue that it is necessary to explicitly include vegetation dynamics into the Budyko framework before it is applied at small scales. Such adaptations would extend the framework not only to applications at small timescales and/or small catchments but to operational activities relating to vegetation and water management.
    Print ISSN: 1027-5606
    Digitale ISSN: 1607-7938
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2008-06-17
    Beschreibung: The main processes determining soil moisture dynamics are infiltration, percolation, evaporation and root water uptake. Modelling soil moisture dynamics therefore requires an interdisciplinary approach that links hydrological, atmospheric and biological processes. Previous approaches treat either root water uptake rates or root distributions and transpiration rates as given, and calculate the soil moisture dynamics based on the theory of flow in unsaturated media. The present study introduces a different approach to linking soil water and vegetation dynamics, based on vegetation optimality. Assuming that plants have evolved mechanisms that minimise costs related to the maintenance of the root system while meeting their demand for water, we develop a model that dynamically adjusts the vertical root distribution in the soil profile to meet this objective. The model was used to compute the soil moisture dynamics, root water uptake and fine root respiration in a tropical savanna over 12 months, and the results were compared with observations at the site and with a model based on a fixed root distribution. The optimality-based model reproduced the main features of the observations such as a shift of roots from the shallow soil in the wet season to the deeper soil in the dry season and substantial root water uptake during the dry season. At the same time, simulated fine root respiration rates never exceeded the upper envelope determined by the observed soil respiration. The model based on a fixed root distribution, in contrast, failed to explain the magnitude of water use during parts of the dry season and largely over-estimated root respiration rates. The observed surface soil moisture dynamics were also better reproduced by the optimality-based model than the model based on a prescribed root distribution. The optimality-based approach has the potential to reduce the number of unknowns in a model (e.g. the vertical root distribution), which makes it a valuable alternative to more empirically-based approaches, especially for simulating possible responses to environmental change.
    Print ISSN: 1027-5606
    Digitale ISSN: 1607-7938
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...