ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-10-12
    Description: Regulator of telomere length 1 (RTEL1) is an essential DNA helicase that disassembles telomere loops (T loops) and suppresses telomere fragility to maintain the integrity of chromosome ends. We established that RTEL1 also associates with the replisome through binding to proliferating cell nuclear antigen (PCNA). Mouse cells disrupted for the RTEL1-PCNA interaction (PIP mutant) exhibited accelerated senescence, replication fork instability, reduced replication fork extension rates, and increased origin usage. Although T-loop disassembly at telomeres was unaffected in the mutant cells, telomere replication was compromised, leading to fragile sites at telomeres. RTEL1-PIP mutant mice were viable, but loss of the RTEL1-PCNA interaction accelerated the onset of tumorigenesis in p53-deficient mice. We propose that RTEL1 plays a critical role in both telomere and genome-wide replication, which is crucial for genetic stability and tumor avoidance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vannier, Jean-Baptiste -- Sandhu, Sumit -- Petalcorin, Mark I R -- Wu, Xiaoli -- Nabi, Zinnatun -- Ding, Hao -- Boulton, Simon J -- Canadian Institutes of Health Research/Canada -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):239-42. doi: 10.1126/science.1241779.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Transformation, Neoplastic/genetics/*metabolism ; DNA Helicases/genetics/*metabolism ; *DNA Replication ; Genome/*genetics ; Mice ; Mice, Mutant Strains ; Proliferating Cell Nuclear Antigen/*metabolism ; Telomere/*genetics ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-03
    Description: Large-scale genomic studies have shown that half of epithelial ovarian cancers (EOCs) have alterations in genes regulating homologous recombination (HR) repair. Loss of HR accounts for the genomic instability of EOCs and for their cellular hyper-dependence on alternative poly-ADP ribose polymerase (PARP)-mediated DNA repair mechanisms. Previous studies have implicated the DNA polymerase theta (Poltheta also known as POLQ, encoded by POLQ) in a pathway required for the repair of DNA double-strand breaks, referred to as the error-prone microhomology-mediated end-joining (MMEJ) pathway. Whether Poltheta interacts with canonical DNA repair pathways to prevent genomic instability remains unknown. Here we report an inverse correlation between HR activity and Poltheta expression in EOCs. Knockdown of Poltheta in HR-proficient cells upregulates HR activity and RAD51 nucleofilament assembly, while knockdown of Poltheta in HR-deficient EOCs enhances cell death. Consistent with these results, genetic inactivation of an HR gene (Fancd2) and Polq in mice results in embryonic lethality. Moreover, Poltheta contains RAD51 binding motifs and it blocks RAD51-mediated recombination. Our results reveal a synthetic lethal relationship between the HR pathway and Poltheta-mediated repair in EOCs, and identify Poltheta as a novel druggable target for cancer therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415602/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415602/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ceccaldi, Raphael -- Liu, Jessica C -- Amunugama, Ravindra -- Hajdu, Ildiko -- Primack, Benjamin -- Petalcorin, Mark I R -- O'Connor, Kevin W -- Konstantinopoulos, Panagiotis A -- Elledge, Stephen J -- Boulton, Simon J -- Yusufzai, Timur -- D'Andrea, Alan D -- 104558/Wellcome Trust/United Kingdom -- P50 CA168504/CA/NCI NIH HHS/ -- P50CA168504/CA/NCI NIH HHS/ -- R01 HL052725/HL/NHLBI NIH HHS/ -- R01HL52725/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 12;518(7538):258-62. doi: 10.1038/nature14184. Epub 2015 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA. ; 1] Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Department of Biological Chemistry &Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA [3] Department of Molecular &Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Howard Hughes Medical Institute, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA. ; DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, Clare Hall, South Mimms EN6 3LD, UK. ; Department of Medical Oncology, Medical Gynecologic Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA. ; 1] Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Department of Biological Chemistry &Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25642963" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cell Cycle ; Cell Death ; Cell Line, Tumor ; *DNA Breaks, Double-Stranded ; *DNA End-Joining Repair/genetics ; DNA Replication ; DNA-Directed DNA Polymerase/deficiency/*metabolism ; Embryo Loss ; Fanconi Anemia Complementation Group D2 Protein/deficiency/genetics ; Female ; Genomic Instability ; *Homologous Recombination/genetics ; Humans ; Mice ; Molecular Targeted Therapy ; Neoplasms, Glandular and Epithelial/*genetics/*metabolism/pathology ; Ovarian Neoplasms/*genetics/*metabolism/pathology ; Protein Binding ; Rad51 Recombinase/antagonists & inhibitors/metabolism ; Recombinational DNA Repair/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-05-02
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-10-10
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...