ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-11-19
    Description: Long interspersed nuclear elements-1 (LINE-1 or L1s) are abundant retrotransposons that comprise approximately 20% of mammalian genomes. Active L1 retrotransposons can impact the genome in a variety of ways, creating insertions, deletions, new splice sites or gene expression fine-tuning. We have shown previously that L1 retrotransposons are capable of mobilization in neuronal progenitor cells from rodents and humans and evidence of massive L1 insertions was observed in adult brain tissues but not in other somatic tissues. In addition, L1 mobility in the adult hippocampus can be influenced by the environment. The neuronal specificity of somatic L1 retrotransposition in neural progenitors is partially due to the transition of a Sox2/HDAC1 repressor complex to a Wnt-mediated T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional activator. The transcriptional switch accompanies chromatin remodelling during neuronal differentiation, allowing a transient stimulation of L1 transcription. The activity of L1 retrotransposons during brain development can have an impact on gene expression and neuronal function, thereby increasing brain-specific genetic mosaicism. Further understanding of the molecular mechanisms that regulate L1 expression should provide new insights into the role of L1 retrotransposition during brain development. Here we show that L1 neuronal transcription and retrotransposition in rodents are increased in the absence of methyl-CpG-binding protein 2 (MeCP2), a protein involved in global DNA methylation and human neurodevelopmental diseases. Using neuronal progenitor cells derived from human induced pluripotent stem cells and human tissues, we revealed that patients with Rett syndrome (RTT), carrying MeCP2 mutations, have increased susceptibility for L1 retrotransposition. Our data demonstrate that L1 retrotransposition can be controlled in a tissue-specific manner and that disease-related genetic mutations can influence the frequency of neuronal L1 retrotransposition. Our findings add a new level of complexity to the molecular events that can lead to neurological disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059197/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059197/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muotri, Alysson R -- Marchetto, Maria C N -- Coufal, Nicole G -- Oefner, Ruth -- Yeo, Gene -- Nakashima, Kinichi -- Gage, Fred H -- 1-DP2-OD006495-01/OD/NIH HHS/ -- DP2 OD006495/OD/NIH HHS/ -- DP2 OD006495-01/OD/NIH HHS/ -- R01 MH088485/MH/NIMH NIH HHS/ -- R01 MH088485-03/MH/NIMH NIH HHS/ -- R01MH088485/MH/NIMH NIH HHS/ -- England -- Nature. 2010 Nov 18;468(7322):443-6. doi: 10.1038/nature09544.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, La Jolla, California 92093-0695, USA. muotri@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085180" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/genetics ; Animals ; Brain/cytology/metabolism ; DNA Methylation ; Gene Silencing ; Humans ; Induced Pluripotent Stem Cells/metabolism ; Long Interspersed Nucleotide Elements/*genetics ; Male ; Methyl-CpG-Binding Protein 2/deficiency/genetics/*metabolism ; Methylation ; Mice ; Neuroepithelial Cells/metabolism ; Neurons/*metabolism ; Organ Specificity ; Promoter Regions, Genetic/genetics ; Rats ; Recombination, Genetic/*genetics ; Rett Syndrome/genetics/pathology ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-03
    Description: Bipolar disorder is a complex neuropsychiatric disorder that is characterized by intermittent episodes of mania and depression; without treatment, 15% of patients commit suicide. Hence, it has been ranked by the World Health Organization as a top disorder of morbidity and lost productivity. Previous neuropathological studies have revealed a series of alterations in the brains of patients with bipolar disorder or animal models, such as reduced glial cell number in the prefrontal cortex of patients, upregulated activities of the protein kinase A and C pathways and changes in neurotransmission. However, the roles and causation of these changes in bipolar disorder have been too complex to exactly determine the pathology of the disease. Furthermore, although some patients show remarkable improvement with lithium treatment for yet unknown reasons, others are refractory to lithium treatment. Therefore, developing an accurate and powerful biological model for bipolar disorder has been a challenge. The introduction of induced pluripotent stem-cell (iPSC) technology has provided a new approach. Here we have developed an iPSC model for human bipolar disorder and investigated the cellular phenotypes of hippocampal dentate gyrus-like neurons derived from iPSCs of patients with bipolar disorder. Guided by RNA sequencing expression profiling, we have detected mitochondrial abnormalities in young neurons from patients with bipolar disorder by using mitochondrial assays; in addition, using both patch-clamp recording and somatic Ca(2+) imaging, we have observed hyperactive action-potential firing. This hyperexcitability phenotype of young neurons in bipolar disorder was selectively reversed by lithium treatment only in neurons derived from patients who also responded to lithium treatment. Therefore, hyperexcitability is one early endophenotype of bipolar disorder, and our model of iPSCs in this disease might be useful in developing new therapies and drugs aimed at its clinical treatment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742055/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742055/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mertens, Jerome -- Wang, Qiu-Wen -- Kim, Yongsung -- Yu, Diana X -- Pham, Son -- Yang, Bo -- Zheng, Yi -- Diffenderfer, Kenneth E -- Zhang, Jian -- Soltani, Sheila -- Eames, Tameji -- Schafer, Simon T -- Boyer, Leah -- Marchetto, Maria C -- Nurnberger, John I -- Calabrese, Joseph R -- Odegaard, Ketil J -- McCarthy, Michael J -- Zandi, Peter P -- Alda, Martin -- Nievergelt, Caroline M -- Pharmacogenomics of Bipolar Disorder Study -- Mi, Shuangli -- Brennand, Kristen J -- Kelsoe, John R -- Gage, Fred H -- Yao, Jun -- MH106056/MH/NIMH NIH HHS/ -- R01 MH106056/MH/NIMH NIH HHS/ -- U01 MH092758/MH/NIMH NIH HHS/ -- U01 MH92758/MH/NIMH NIH HHS/ -- England -- Nature. 2015 Nov 5;527(7576):95-9. doi: 10.1038/nature15526. Epub 2015 Oct 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA. ; The Salk Institute for Biological Studies, Stem Cell Core, La Jolla, California 92037, USA. ; Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China. ; Department of Psychiatry, Indiana University, Indianapolis, Indiana 46202, USA. ; Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio 44106, USA. ; Department of Psychiatry, University of Bergen, Bergen 5020, Norway. ; Department of Psychiatry, VA San Diego Healthcare System, La Jolla, California 92151, USA. ; Department of Psychiatry, University of California San Diego, La Jolla, California, 92093, USA. ; Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland 21218, USA. ; Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, B3H2E2, Canada. ; Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA. ; Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou 221009, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26524527" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/*drug effects ; Antipsychotic Agents/*pharmacology ; Bipolar Disorder/*pathology ; Calcium Signaling/drug effects ; Dentate Gyrus/drug effects/pathology ; Endophenotypes ; Humans ; Induced Pluripotent Stem Cells/pathology ; Lithium Compounds/*pharmacology ; Male ; Mitochondria/pathology ; Neurons/*drug effects/*pathology ; Patch-Clamp Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-25
    Description: Identifying cellular and molecular differences between human and non-human primates (NHPs) is essential to the basic understanding of the evolution and diversity of our own species. Until now, preserved tissues have been the main source for most comparative studies between humans, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). However, these tissue samples do not fairly represent the distinctive traits of live cell behaviour and are not amenable to genetic manipulation. We propose that induced pluripotent stem (iPS) cells could be a unique biological resource to determine relevant phenotypical differences between human and NHPs, and that those differences could have potential adaptation and speciation value. Here we describe the generation and initial characterization of iPS cells from chimpanzees and bonobos as new tools to explore factors that may have contributed to great ape evolution. Comparative gene expression analysis of human and NHP iPS cells revealed differences in the regulation of long interspersed element-1 (L1, also known as LINE-1) transposons. A force of change in mammalian evolution, L1 elements are retrotransposons that have remained active during primate evolution. Decreased levels of L1-restricting factors APOBEC3B (also known as A3B) and PIWIL2 (ref. 7) in NHP iPS cells correlated with increased L1 mobility and endogenous L1 messenger RNA levels. Moreover, results from the manipulation of A3B and PIWIL2 levels in iPS cells supported a causal inverse relationship between levels of these proteins and L1 retrotransposition. Finally, we found increased copy numbers of species-specific L1 elements in the genome of chimpanzees compared to humans, supporting the idea that increased L1 mobility in NHPs is not limited to iPS cells in culture and may have also occurred in the germ line or embryonic cells developmentally upstream to germline specification during primate evolution. We propose that differences in L1 mobility may have differentially shaped the genomes of humans and NHPs and could have continuing adaptive significance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064720/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064720/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marchetto, Maria C N -- Narvaiza, Inigo -- Denli, Ahmet M -- Benner, Christopher -- Lazzarini, Thomas A -- Nathanson, Jason L -- Paquola, Apua C M -- Desai, Keval N -- Herai, Roberto H -- Weitzman, Matthew D -- Yeo, Gene W -- Muotri, Alysson R -- Gage, Fred H -- AI074967/AI/NIAID NIH HHS/ -- GM084317/GM/NIGMS NIH HHS/ -- HG004659/HG/NHGRI NIH HHS/ -- MH08848/MH/NIMH NIH HHS/ -- MH094753/MH/NIMH NIH HHS/ -- NS075449/NS/NINDS NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- R01 MH088485/MH/NIMH NIH HHS/ -- R01 MH094753/MH/NIMH NIH HHS/ -- R01 MH095741/MH/NIMH NIH HHS/ -- R01 NS075449/NS/NINDS NIH HHS/ -- England -- Nature. 2013 Nov 28;503(7477):525-9. doi: 10.1038/nature12686. Epub 2013 Oct 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24153179" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/metabolism ; Cell Line ; Cell Shape ; Cytidine Deaminase/metabolism ; Evolution, Molecular ; Genome, Human/genetics ; High-Throughput Nucleotide Sequencing ; Humans ; Karyotyping ; Long Interspersed Nucleotide Elements/*genetics ; Mice, Nude ; Pan paniscus/*genetics/metabolism ; Pan troglodytes/*genetics/metabolism ; Pluripotent Stem Cells/cytology/*metabolism ; RNA, Messenger/analysis/genetics ; Sequence Analysis, RNA ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mertens, Jerome -- Wang, Qiu-Wen -- Kim, Yongsung -- Yu, Diana X -- Pham, Son -- Yang, Bo -- Zheng, Yi -- Diffenderfer, Kenneth E -- Zhang, Jian -- Soltani, Sheila -- Eames, Tameji -- Schafer, Simon T -- Boyer, Leah -- Marchetto, Maria C -- Nurnberger, John I -- Calabrese, Joseph R -- Oedegaard, Ketil J -- McCarthy, Michael J -- Zandi, Peter P -- Alda, Martin -- Nievergelt, Caroline M -- Pharmacogenomics of Bipolar Disorder Study -- Mi, Shuangli -- Brennand, Kristen J -- Kelsoe, John R -- Gage, Fred H -- Yao, Jun -- England -- Nature. 2016 Feb 11;530(7589):242. doi: 10.1038/nature16182. Epub 2015 Nov 25.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26605530" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
  • 7
    Publication Date: 2004-12-14
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-21
    Description: Rett syndrome is a severe form of autism spectrum disorder, mainly caused by mutations of a single gene methyl CpG binding protein 2 (MeCP2) on the X chromosome. Patients with Rett syndrome exhibit a period of normal development followed by regression of brain function and the emergence of autistic behaviors....
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-12-21
    Description: Long interspersed element-1 (L1) retrotransposons compose ∼20% of the mammalian genome, and ongoing L1 retrotransposition events can impact genetic diversity by various mechanisms. Previous studies have demonstrated that endogenous L1 retrotransposition can occur in the germ line and during early embryonic development. In addition, recent data indicate that engineered human L1s can undergo somatic retrotransposition in human neural progenitor cells and that an increase in human-specific L1 DNA content can be detected in the brains of normal controls, as well as in Rett syndrome patients. Here, we demonstrate an increase in the retrotransposition efficiency of engineered human L1s in cells that lack or contain severely reduced levels of ataxia telangiectasia mutated, a serine/threonine kinase involved in DNA damage signaling and neurodegenerative disease. We demonstrate that the increase in L1 retrotransposition in ataxia telangiectasia mutated-deficient cells most likely occurs by conventional target-site primed reverse transcription and generate either longer, or perhaps more, L1 retrotransposition events per cell. Finally, we provide evidence suggesting an increase in human-specific L1 DNA copy number in postmortem brain tissue derived from ataxia telangiectasia patients compared with healthy controls. Together, these data suggest that cellular proteins involved in the DNA damage response may modulate L1 retrotransposition.
    Keywords: Telomerase and Retrotransposons: Reverse Transcriptases That Shaped Genomes Sackler Special Feature
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-04-18
    Description: The hereditary spastic paraplegias (HSPs) are a heterogeneous group of motorneuron diseases characterized by progressive spasticity and paresis of the lower limbs. Mutations in Spastic Gait 4 ( SPG4 ), encoding spastin, are the most frequent cause of HSP. To understand how mutations in SPG4 affect human neurons, we generated human induced pluripotent stem cells (hiPSCs) from fibroblasts of two patients carrying a c.1684C〉T nonsense mutation and from two controls. These SPG4 and control hiPSCs were able to differentiate into neurons and glia at comparable efficiency. All known spastin isoforms were reduced in SPG4 neuronal cells. The complexity of SPG4 neurites was decreased, which was paralleled by an imbalance of axonal transport with less retrograde movement. Prominent neurite swellings with disrupted microtubules were present in SPG4 neurons at an ultrastructural level. While some of these swellings contain acetylated and detyrosinated tubulin, these tubulin modifications were unchanged in total cell lysates of SPG4 neurons. Upregulation of another microtubule-severing protein, p60 katanin, may partially compensate for microtubuli dynamics in SPG4 neurons. Overexpression of the M1 or M87 spastin isoforms restored neurite length, branching, numbers of primary neurites and reduced swellings in SPG4 neuronal cells. We conclude that neurite complexity and maintenance in HSP patient-derived neurons are critically sensitive to spastin gene dosage. Our data show that elevation of single spastin isoform levels is sufficient to restore neurite complexity and reduce neurite swellings in patient cells. Furthermore, our human model offers an ideal platform for pharmacological screenings with the goal to restore physiological spastin levels in SPG4 patients.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...