ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-06-13
    Description: Selective lowering of Abeta42 levels (the 42-residue isoform of the amyloid-beta peptide) with small-molecule gamma-secretase modulators (GSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer's disease. To identify the target of these agents we developed biotinylated photoactivatable GSMs. GSM photoprobes did not label the core proteins of the gamma-secretase complex, but instead labelled the beta-amyloid precursor protein (APP), APP carboxy-terminal fragments and amyloid-beta peptide in human neuroglioma H4 cells. Substrate labelling was competed by other GSMs, and labelling of an APP gamma-secretase substrate was more efficient than a Notch substrate. GSM interaction was localized to residues 28-36 of amyloid-beta, a region critical for aggregation. We also demonstrate that compounds known to interact with this region of amyloid-beta act as GSMs, and some GSMs alter the production of cell-derived amyloid-beta oligomers. Furthermore, mutation of the GSM binding site in the APP alters the sensitivity of the substrate to GSMs. These findings indicate that substrate targeting by GSMs mechanistically links two therapeutic actions: alteration in Abeta42 production and inhibition of amyloid-beta aggregation, which may synergistically reduce amyloid-beta deposition in Alzheimer's disease. These data also demonstrate the existence and feasibility of 'substrate targeting' by small-molecule effectors of proteolytic enzymes, which if generally applicable may significantly broaden the current notion of 'druggable' targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678541/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678541/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kukar, Thomas L -- Ladd, Thomas B -- Bann, Maralyssa A -- Fraering, Patrick C -- Narlawar, Rajeshwar -- Maharvi, Ghulam M -- Healy, Brent -- Chapman, Robert -- Welzel, Alfred T -- Price, Robert W -- Moore, Brenda -- Rangachari, Vijayaraghavan -- Cusack, Bernadette -- Eriksen, Jason -- Jansen-West, Karen -- Verbeeck, Christophe -- Yager, Debra -- Eckman, Christopher -- Ye, Wenjuan -- Sagi, Sarah -- Cottrell, Barbara A -- Torpey, Justin -- Rosenberry, Terrone L -- Fauq, Abdul -- Wolfe, Michael S -- Schmidt, Boris -- Walsh, Dominic M -- Koo, Edward H -- Golde, Todd E -- P01 AG020206/AG/NIA NIH HHS/ -- P01 AG020206-010002/AG/NIA NIH HHS/ -- R01 AG017574/AG/NIA NIH HHS/ -- R01 AG017574-08/AG/NIA NIH HHS/ -- R01 AG017574-09/AG/NIA NIH HHS/ -- R01 NS041355/NS/NINDS NIH HHS/ -- R01 NS041355-06A2/NS/NINDS NIH HHS/ -- R01 NS041355-07/NS/NINDS NIH HHS/ -- England -- Nature. 2008 Jun 12;453(7197):925-9. doi: 10.1038/nature07055.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, Florida 32224, USA. kukar.thomas@mayo.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18548070" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/drug therapy/enzymology/metabolism ; Amyloid Precursor Protein Secretases/*antagonists & inhibitors/*metabolism ; Amyloid beta-Protein Precursor/antagonists & ; inhibitors/*chemistry/genetics/*metabolism ; Animals ; Anti-Inflammatory Agents, Non-Steroidal/chemistry/*metabolism/*pharmacology ; Binding Sites/drug effects ; CHO Cells ; Cell Line, Tumor ; Cricetinae ; Cricetulus ; Female ; Humans ; Mice ; Protein Binding/drug effects ; Receptors, Notch/genetics/metabolism ; Substrate Specificity/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...