ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-02-15
    Print ISSN: 1063-651X
    Electronic ISSN: 1095-3787
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Dendrites describe the tree-like crystal morphology commonly assumed in many material systems--particularly in metals and alloys that freeze from supercooled or supersaturated melts. There remains a high level of engineering interest in dendritic solidification because of the role of dendrites in the determination of cast alloy microstructures. Microstructure plays a key role in determining the physical properties of cast or welded products. In addition, dendritic solidification provides an example of non-equilibrium physics and is one of the simplest non-trivial examples of dynamic pattern formation, where an amorphous melt, under simple starting conditions, evolves into a complex ramified microstructure. Although it is well-known that dendritic growth is controlled by the transport of latent heat from the moving solid-melt interface as the dendrite advances into a supercooled melt, an accurate, and predictive model has not been developed. Current theories consider: 1) the transfer of heat or solute from the solid-liquid interface into the melt, and 2) the interfacial crystal growth and growth selection physics for the interface. However, the effects of gravity-induced convection on the transfer of heat from the interface prevent either element from being adequately tested solely under terrestrial conditions. The Isothermal Dendritic Growth Experiment (IDGE) constituted a series of three NASA-supported microgravity experiments, all of which flew aboard the space shuttle, Columbia. This experimental space flight series was designed and operated to grow and record dendrite solidification in the absence of gravity-induced convective heat transfer, and thereby produce a wealth of benchmark-quality data for testing solidification scaling laws. The data collection from the on-orbit phase of the IDGE flight series is now complete. We are currently completing analyses and moving towards final data archiving.
    Keywords: Solid-State Physics
    Type: Fourth United States Microgravity Payload: One Year Report; 9-16; NASA/CP-1999-209628
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-07
    Description: The Isothermal Dendritic Growth Experiment (IDGE) constituted a series of three NASA-supported microgravity experiments, all of which flew aboard the space shuttle, Columbia. This experimental space flight series was designed and operated to grow and record dendrite solidification in the absence of gravity-induced convective heat transfer, and thereby produce a wealth of benchmark-quality data for testing solidification scaling laws. The data and analysis performed on the dendritic growth speed and tip size in Succinontrie (SCN) demonstrates that although the theory yields predictions that are reasonably in agreement with experiment, there are significant discrepancies. However, some of these discrepancies can be explained by accurately describing the diffusion of heat. The key finding involves recognition that the actual three-dimensional shape of dendrites includes time-dependent side-branching and a tip region that is not a paraboloid of revolution. Thus, the role of heat transfer in dendritic growth is validated, with the caveat that a more realistic model of the dendrite then a paraboloid is needed to account for heat flow in an experimentally observed dendrite. We are currently conducting additional analysis to further confirm and demonstrate these conclusions. The data and analyses for the growth selection physics remain much less definitive. From the first flight, the data indicated that the selection parameter, sigma*, is not exactly a constant, but exhibits a slight dependence on the supercooling. Additional data from the second flight are being examined to investigate the selection of a unique dendrite speed, tip size and shape. The IDGE flight series is now complete. We are currently completing analyses and moving towards final data archiving. It is gratifying to see that the IDGE published results and archived data sets are being used actively by other scientists and engineers. In addition, we are also pleased to report that the techniques and IDGE hardware system that the authors developed with NASA, are being currently employed on both designated flight experiments, like EDSE, and on flight definition experiments, like TDSE.
    Keywords: Materials Processing
    Type: NASA Microgravity Materials Science Conference; 253-260; NASA/CP-1999-209092
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-09-27
    Description: The RIDGE effort continues the aegis of the earlier, NASA-sponsored, Isothermal Dendritic Growth Experiment (IDGE) series of experiments through the continued analysis of microgravity data acquired during these earlier space flights. The preliminary observations presented here demonstrate that there are significant differences between SCN and the more anisotropic PVA dendrites. The side branch structure becomes amplified only further behind the tip, and the interface shape is generally wider (i.e. more hyperbolic than parabolic) in PVA than in SCN. These characteristics are seen to affect the process of heat transport. Additionally, the dendrites grown during the fourth United States Microgravity Payload (USMP-4) exhibit time-dependent growth characteristics and may not always have reached steady-state growth during the experiment.
    Keywords: Chemistry and Materials (General)
    Type: Microgravity Materials Science Conference 2000; Volume 1; 246-252; NASA/CP-2001-210827/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Dendritic solidification is one of the simplest examples of pattern formation where a structureless melt evolves into a ramified crystalline microstructure; it is a common mode of solidification in many materials, but especially so in metals and alloys. There is considerable engineering interest in dendrites because of the role dendrites play in the determination of microstructure, and thereby in influencing the physical properties of cast metals and alloys. Dendritic solidification provides important examples of non-equilibrium physics, pattern formation dynamics, and models for computational condensed matter and material physics. Current theories of dendritic growth generally couple diffusion effects in the melt with the physics introduced by the interface. Unfortunately, in terrestrial based experiments, convective effects in the melt alter the growth process in such a manner as to prevent definitive analysis of convective, diffusive or interfacial effects. Thus, the effective elimination of convection in the melt by operating experiments on orbit were required to produce high-fidelity data needed for achieving further progress. This simple fact comprised the scientific justification for the IDGE.
    Keywords: Chemistry and Materials (General)
    Type: Microgravity Materials Science Conference 2000; 1; 253-258; NASA/CP-2001-210827/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...