ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-05
    Description: NASA Glenn Research Center s General Multi-Block Navier-Stokes Convective Heat Transfer Code (Glenn-HT) has been used extensively to predict heat transfer and fluid flow for a variety of steady gas turbine engine problems. Efforts have focused on turbine heat transfer, where computations have modeled tip clearance, internal coolant, and film cooling flows. Excellent agreement has been achieved for a variety of experimental test cases, and results have been published in over 40 technical publications. The code is available to U.S. industry and has been used by several domestic gas turbine engine companies. The following figure shows a typical flow solution from the Glenn-HT code for a film-cooled turbine blade.
    Keywords: Engineering (General)
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: Heat transfer measurements were obtained on the endwall and a 2-D section of a variable speed power turbine (VSPT) rotor blade. Infrared thermography was used to help determine the transition of flow from laminar to turbulent as well asdetermine regions of flow separation. Steady state data was obtained for six incidence angles ranging from +50 degree to-17 degree, and at five flow conditions for each angle.
    Keywords: Aerodynamics
    Type: NASA/TM-2018-220033 , E-19632 , GRC-E-DAA-TN60642 , AHS International Annual Forum & Technology Display; May 14, 2018 - May 17, 2018; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The NASA Glenn Research Center General Multi-Block Navier-Stokes Convective Heat Transfer Code, Glenn-HT, has been used extensively to predict heat transfer and fluid flow for a variety of steady gas turbine engine problems. Recently, the Glenn-HT code has been completely rewritten in Fortran 90/95, a more object-oriented language that allows programmers to create code that is more modular and makes more efficient use of data structures. The new implementation takes full advantage of the capabilities of the Fortran 90/95 programming language. As a result, the Glenn-HT code now provides dynamic memory allocation, modular design, and unsteady flow capability. This allows for the heat-transfer analysis of a full turbine stage. The code has been demonstrated for an unsteady inflow condition, and gridding efforts have been initiated for a full turbine stage unsteady calculation. This analysis will be the first to simultaneously include the effects of rotation, blade interaction, film cooling, and tip clearance with recessed tip on turbine heat transfer and cooling performance. Future plans call for the application of the new Glenn-HT code to a range of gas turbine engine problems of current interest to the heat-transfer community. The new unsteady flow capability will allow researchers to predict the effect of unsteady flow phenomena upon the convective heat transfer of turbine blades and vanes. Work will also continue on the development of conjugate heat-transfer capability in the code, where simultaneous solution of convective and conductive heat-transfer domains is accomplished. Finally, advanced turbulence and fluid flow models and automatic gridding techniques are being developed that will be applied to the Glenn-HT code and solution process.
    Keywords: Man/System Technology and Life Support
    Type: LEW-17914-1 , NASA Tech Briefs, September 2006; 31-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Turbine vane aerodynamics were measured in a three vane linear cascade. Surface pressures and blade row losses were obtained over a range of Reynolds and Mach number for three levels of turbulence. Comparisons are made with predictions using a quasi-3D Navier-Stokes analysis. Turbulence intensity measurement were made upstream and downstream of the vane. The purpose of the downstream measurements was to determine how the turbulence was affected by the strong contraction through 75 deg turning.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2002-211709 , NAS 1.15:211709 , E-13457 , GT-2002-30434 , Turbo Expo 2002; Jun 03, 2002 - Jun 06, 2002; Amsterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The effect of wake passing on the showerhead film cooling performance of a turbine blade has been investigated experimentally. The experiments were performed in an annular turbine cascade with an upstream rotating row of cylindrical rods. Nickel thin-film gauges were used to determine local film effectiveness and Nusselt number values for various injectants, blowing ratios, and Strouhal numbers. Results indicated a reduction in film effectiveness with increasing Strouhal number, as well as the expected increase in film effectiveness with blowing ratio. An equation was developed to correlate the span-average film effectiveness data. The primary effect of wake unsteadiness was found to be correlated by a streamwise-constant decrement of 0.094.St. Steady computations were found to be in excellent agreement with experimental Nusselt numbers, but to overpredict experimental film effectiveness values. This is likely due to the inability to match actual hole exit velocity profiles and the absence of a credible turbulence model for film cooling.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-TM-107425 , NAS 1.15:107425 , E-10671 , Turbo Expo; Jun 02, 1997 - Jun 05, 1997; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...