ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2012-05-05
    Description: Predicting the spatial and temporal occurrence of rainfall triggered landslides represents an important scientific and operational issue due to the high threat that they pose to human life and property. This study investigates the relationship between rainfall, soil moisture conditions and landslide movement by using recorded movements of a rock slope located in central Italy, the Torgiovannetto landslide. This landslide is a very large rock slide, threatening county and state roads. Data acquired by a network of extensometers and a meteorological station clearly indicate that the movements of the unstable wedge, first detected in 2003, are still proceeding and the alternate phases of quiescence and reactivation are associated with rainfall patterns. By using a multiple linear regression approach, the opening of the tension cracks (as recorded by the extensometers) as a function of rainfall and soil moisture conditions prior the occurrence of rainfall, are predicted for the period 2007–2009. Specifically, soil moisture indicators are obtained through the Soil Water Index, SWI, a product derived by the Advanced SCATterometer (ASCAT) on board the MetOp (Meteorological Operational) satellite and by an Antecedent Precipitation Index, API. Results indicate that the regression performance (in terms of correlation coefficient, r) significantly enhances if an indicator of the soil moisture conditions is included. Specifically, r is equal to 0.40 when only rainfall is used as a predictor variable and increases to r = 0.68 and r = 0.85 if the API and the SWI are used respectively. Therefore, the coarse spatial resolution (25 km) of satellite data notwithstanding, the ASCAT SWI is found to be very useful for the prediction of landslide movements on a local scale. These findings, although valid for a specific area, present new opportunities for the effective use of satellite-derived soil moisture estimates to improve landslide forecasting.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...