ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 105 (1988), S. 207-219 
    ISSN: 1432-1424
    Keywords: choroid plexus ; brush border membrane ; Ca2+-activated K+ channels ; calcium ; barium ; TEA ; intracellular pH ; cerebrospinal fluid secretion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The properties of Ca2+-activated K+ channels in the apical membrane of theNecturus choroid plexus were studied using single-channel recording techniques in the cell-attached and excised-patch configurations. Channels with large unitary conductances clustered around 150 and 220 pS were most commonly observed. These channels exhibited a high selectivity for K+ over Na+ and K+ over Cs+. They were blocked by high cytoplasmic Na+ concentrations (110mm). Channel activity increased with depolarizing membrane potentials, and with increasing cytoplasmic Ca2+ concentrations. Increasing Ca2+ from 5 to 500nm, increased open probability by an order of magnitude, without changing single-channel conductance. Open probability increased up to 10-fold with a 20-mV depolarization when Ca2+ was 500nm. Lowering intracellular pH one unit, decreased open probability by more than two orders of magnitude, but pH did not affect single-channel conductance. Cytoplasmic Ba2+ reduced both channel-open probability and conductance. The sites for the action of Ba2+ are located at a distance more than halfway through the applied electric field from the inside of the membrane. Values of 0.013 and 117mm were calculated as the apparent Ba2+ dissociation constants (K d (0 mV) for the effects on probability and conductance, respectively. TEA+ (tetraethylammonium) reduced single-channel current. Applied to the cytoplasmic side, it acted on a site 20% of the distance through the membrane, with aK d (0 mV)=5.6mm. A second site, with a higher affinity,K d (0 mV)=0.23mm, may account for the near total block of chanel conductance by 2mm TEA+ applied to the outside of the membrane. It is concluded that the channels inNecturus choroid plexus exhibit many of the properties of “maxi” Ca2+-activated K+ channels found in other tissues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 105 (1988), S. 221-231 
    ISSN: 1432-1424
    Keywords: choroid plexus ; calcium-activated potassium currents ; cerebrospinal fluid secretion ; calcium ; delayed currents ; patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The tight-seal whole-cell recording method has been used to studyNecturus choroid plexus epithelium. A cell potential of −59±2 mV and a whole cell resistance of 56±6 MΩ were measured using this technique. Application of depolarizing step potentials activated voltage-dependent outward currents that developed with time. For example, when the cell was bathed in 110mm NaCl Ringer solution and the interior of the cell contained a solution of 110mm KCl and 5nm Ca2+, stepping the membrane potential from a holding value of −50 to −10 mV evoked outward currents which, after a delay of greater than 50 msec, increased to a steady state in 500 msec. The voltage dependence of the delayed currents suggests that they may be currents through Ca2+-activated K_ channels. Based on the voltage dependence of the activation of Ca2+-activated K+ channels, we have devised a general method to isolate the delayed currents. The delayed currents were highly selective for K+ as their reversal potential at different K+ concentration gradients followed the Nernst potential for K+. These currents were reduced by the addition of TEA+ to the bath solution and were eliminated when Cs+ or Na+ replaced intracellular K+. Increasing the membrane potential to more positive values decreased both the delay and the half-times (t 1/2) to the steady value. Increasing the pipette Ca2+ also decreased the delay and decreasedt 1/2. For instance, when pipette Ca2+ was increased from 5 to 500nm, the delay andt 1/2 decreased from values greater than 50 and 150 msec to values less than 10 and 50 msec. We conclude that the delayed currents are K+ currents through Ca2+-activated K+ channels. At the resting membrane potential of −60 mV, Ca2+-activated K+ channels contribute between 13 to 25% of the total conductance of the cell. The contribution of these channels to cell conductance nearly doubles with membrane depolarization of 20–30 mV. Such depolarizations have been observed when cerebrospinal fluid (CSF) secretion is stimulated by cAMP and with intracellular Ca2+. Thus the Ca2+-activated K+ channels may play a specific role in maintaining intracellular K+ concentrations during CSF secretion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 123 (1991), S. 209-221 
    ISSN: 1432-1424
    Keywords: K+ channels ; basolateral K+ conductance ; oxyntic cell ; acid secretion ; patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Patch-clamp techniques have been applied to characterize the channels in the basolateral membrane of resting (cimetidine-treated, nonacid secreting) oxyntic cells isolated from the gastric mucosa ofNecturus maculosa. In cell-attached patches with pipette solution containing 100mm KCl, four major classes of K+ channels can be distinguished on the basis of their kinetic behavior and conductance: (1) 40% of the patches contained either voltage-independent (a) or hyperpolarization-activated (b), inward-rectifying channels with short mean open times (16 msec fora, and 8 msec forb). Some channels showed subconductance levels. The maximal inward conductanceg max was 31±5 pS (n=13) and the reversal potentialE rev was atV p=−34±6 mV (n=9). (2) 10% of the patches contained depolarization-activated and inward-rectifying channels withg max=40 ±18 pS (n=3) andE rev was atV p=−31±5 mV (n=3). With hyperpolarization, the channels open in bursts with rapid flickerings within bursts. Addition of carbachol (1mm) to the bath solution in cell-attached patches increased the open probabilityP o of these channels. (3) 10% of the patches contained voltage-independent inward-rectifying channels withg max=21±3 pS (n=4) andE rev was atV p=−24±9 mV (n=4). These channels exhibited very high open probability (P o=0.9) and long mean open time (1.6 sec) at the resting potential. (4) 20% of the patches contained voltage-independent channels with limiting inward conductance of 26±2 pS (n=3) andE rev atV p=−33±3 mV (n=3). The channels opened in bursts consisting of sequential activation of multiple channels with very brief mean open times (10 msec). In addition, channels with conductances less than 6 pS were observed in 20% of the patches. In all nine experiments with K+ in the pipette solution replaced by Na+, unitary currents were outward, and inward currents were observed only for large hyperpolarizing potentials. This indicates that the channels are more selective for K+ over Na+ and Cl−. A variety of K+ channels contributes to the basolateral K+ conductance of resting oxyntic cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1424
    Keywords: Na+/glucose cotransport ; electrogenic transporters ; kinetic model ; nonrapid equilibrium ; presteady-state kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The results of the accompanying electrophysiological study of the cloned Na+/glucose cotransporter from small intestine (Parent, L., Supplisson, S., Loo, D.D.F., Wright, E.M. (1992) J. Membrane Biol. 125:49–62) were evaluated in terms of a kinetic model. The steady-state and presteady-state cotransporter properties are described by a 6-state ordered kinetic model (“mirror” symmetry) with a Na+:αMDG stoichiometry of 2. Carrier translocation in the membrane as well as Na+ and sugar binding and dissociation are treated as a function of their individual rate constants. Empty carrier translocation and Na+ binding/ dissociation are the only steps considered to be voltage dependent. Currents were associated with the translocation of the negatively charged carrier in the membrane. Negative membrane potential facilitates sugar transport. One numerical solution was found for the 14 rate constants that account quantitatively for our experiment observations: i.e., (i) sigmoidal shape of the sugar-specific current-voltage curves (absence of outward currents and inward current saturation at high negative potentials), (ii) Na+ and voltage dependence of K 0.5 sugar and i max sugar , (iii) sugar and voltage dependence of K 0.5 Na and i max Na , (iv) presteady-state currents and their dependence on external Na+, αMDG and membrane potential, and (v) and carrier Na+ leak current. We conclude that the main voltage effect is on carrier translocation. Na+ ions that migrate from the extracellular medium to their binding sites sense 25 to 35% of the transmembrane voltage, whereas charges associated with the carrier translocation experiences 60 to 75% of the membrane electrical field. Internal Na+ ion binding is not voltage dependent. In our nonrapid equilibrium model, the rate-limiting step for sugar transport is a function of the membrane potential, [Na]0 and [αMDG]0. At 0 mV and at saturating [Na]0 and [αMDG]0, the rate-limiting step for sugar transport is the empty carrier translocation (5 sec−1). As the membrane potential is made more negative, the empty carrier translocation gets faster and the internal Na+ dissociation becomes increasingly rate limiting. However, as [Na]0 is decreased to less than 10 mm, the rate-limiting step is the external Na+ ions binding in the 0 to −150 mV potential range. At 0 mV, the external Na+ dissociation constant KNa′ is 80 mm and decreases to 24 mm at −150 mV. The external sugar dissociation constant KNaS′ is estimated to be 200 μm and voltage independent. Finally, the internal leak pathway (CNa2 translocation) is insignificant. While we cannot rule out a more complex kinetic model, the electrical properties of the cloned Na+/glucose cotransporter are found to be adequately described by this 6-state kinetic model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1424
    Keywords: Na+/glucose cotransport ; electrogenic cotransporters ; steady-state kinetics ; presteady-state currents ; clone ; Xenopus oocytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The cloned rabbit intestinal Na+/glucose cotransporter was expressed in Xenopus laevis oocytes. Presteady-state and steady-state currents associated with cotransporter activity were measured with the two-electrode voltage-clamp technique. Steady-state sugar-dependent currents were measured between −150 and +90 mV as a function of external Na+ ([Na]0) and α-methyl-d-glucopyranoside concentrations ([αMDG]0). K 0.5 αMDG was found to be dependent upon [Na]0 and the membrane potential. At V m =−50 mV, increasing [Na]0 from 10 to 100 mm decreased K 0.5 αMDG from 1.5 mm to 180 μm. Increasing membrane potential toward negative values decreased K 0.5 αMDG at nonsaturating [Na]0. For instance, at 10 mM [Na]0, K 0.5 αMDG decreased from 1.5 mm to 360 μm on increasing the membrane potential from −50 to −150 mV. The i max αMDG was relatively insensitive to [Na]0 between 10 and 100 mm and weakly voltage dependent (e-fold increase per 140 mV). K 0.5 Na and i max Na were found to be dependent upon membrane potential and [sugar]0. In the presence of 1 mm [αMDG]0, K 0.5 Na decreased from 50 to 5 mm between 0 and −150 mV and i max Na increased twofold between −30 and −200 mV. The voltage dependence of K 0.5 Na is consistent with an effect of potential on Na+ binding (Na+-well effect), whereas the voltage dependence of i max Na is compatible with the translocation step being voltage dependent. It is concluded that voltage influences both Na+ binding and translocation. Presteady-state currents were observed for depolarization pulses in the presence of 100 mm [Na]0. The transient current relaxed with a half time of =10 msec, and both the half time and magnitude of the transient varied with the holding potential and the size of depolarization pulse. Presteady-state currents were not observed after the addition of phlorizin or αMDG to the external Na+ solution and were not observed for water-injected control oocytes. We conclude that presteady-state currents are due to the activity of the carrier and that they may give a novel insight to the transport mechanism of the Na+/ glucose cotransporter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 110 (1989), S. 19-28 
    ISSN: 1432-1424
    Keywords: colon ; ion transport ; ion channel ; cyclic nucleotides ; calcium ; potassium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Using patch-clamp techniques, we have studied Ca2+-activated K+ channels in the basolateral membrane of freshly isolated epithelial cells from rabbit distal colon. Epithelial cell clusters were obtained from distal colon by gentle mechanical disruption of isolated crypts. Gigaohm seals were obtained on the basolateral surface of the cell clusters. At the resting potential (approximately −45 mV), with NaCl Ringer's bathing the cell, the predominant channels had a conductance of 131±25 pS. Channel activity depended on voltage as depolarization of the membrane increased the open probability. In excised inside-out patches, channels were found to be selective for K+ over Na+. Channel activity correlated directly with bath Ca2+ concentration in the excised patches. Channel currents were blocked by 5mm TEA+ and 1mm Ba2+. In cell-attached patches, after addition of the Ca2+ ionophore A23187, which increases intracellular Ca2+, open probability was markedly increased. Channel activity was also regulated by cAMP as addition of 1mm dibutyryl-cAMP in the bath solution in cell-attached patches increased channel open probability over 20-fold. Channels that had been activated by cAMP were further activated by Ca2+. We conclude that the basolateral membrane of epithelial cells from descending colon contains a class of potassium channels, which are regulated by intracellular Ca2+ and cAMP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 97 (1987), S. 31-41 
    ISSN: 1432-1424
    Keywords: oxyntic cell ; basolateral K+ conductance ; patch clamp ; Ca2+-activated K+ channels ; cAMP-regulated K+ channels ; acid secretion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Patch-clamp methods were used to study single-channel events in isolated oxyntic cells and gastric glands fromNecturus maculosa. Cell-attached, excised inside-out and outside-out patches from the basolateral membrane frequently contained channels which had conductances of 67±21 pS in 24% of the patches and channels of smaller conductance, 33±6 pS in 56% of the patches. Channels in both classes were highly selective for K+ over Na+ and Cl−, and shared linear current-voltage relations. The 67-pS channel was activated by membrane depolarization, whereas the activity of the 33-pS channel was relatively voltage independent. The larger conductance channels were activated by intracellular Ca2+ in the range between 5 and 500nm, but unaffected by cAMP. The smaller conductance channels were activated by cAMP, but not Ca2+. The presence of K+ channels in the basolateral membrane which are regulated by these known “second messengers” can account for the increase in conductance and the hyperpolarization of the membrane observed upon secretagogue stimulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-30
    Description: In the human sodium glucose cotransporter (hSGLT1) cycle, the protein undergoes conformational changes where the sugar-binding site alternatively faces the external and internal surfaces. Functional site-directed fluorometry was used to probe the conformational changes at the sugar-binding site. Residues (Y290, T287, H83, and N78) were mutated to cysteines. The mutants were expressed in Xenopus laevis oocytes and tagged with environmentally sensitive fluorescent rhodamines [e.g., tetramethylrhodamine (TMR)-thiols]. The fluorescence intensity was recorded as the mutants were driven into different conformations using voltage jumps. Sugar binding and transport by the fluorophore-tagged mutants were blocked, but Na+ binding and the voltage-dependent conformational transitions were unaffected. Structural models indicated that external Na+ binding opened a large aqueous vestibule (600 Å3) leading to the sugar-binding site. The fluorescence of TMR covalently linked to Y290C, T287C, and H83C decreased as the mutant proteins were driven from the inward to the outward open Na+-bound conformation. The time courses of fluorescence changes (milliseconds) were close to the SGLT1 capacitive charge movements. The quench in rhodamine fluorescence indicated that the environment of the chromophores became more polar with opening of the external gates as the protein transitioned from the inward to outward facing state. Structural analyses showed an increase in polar side chains and a decrease in hydrophobic side chains lining the vestibule, and this was reflected in solvation of the chromophore. The results demonstrate the opening and closing of external gates in real time, with the accompanying changes of polarity of the sugar vestibule.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-20
    Description: Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-10-18
    Description: Membrane transporters, in addition to their major role as specific carriers for ions and small molecules, can also behave as water channels. However, neither the location of the water pathway in the protein nor their functional importance is known. Here, we map the pathway for water and urea through the intestinal sodium/glucose cotransporter SGLT1. Molecular dynamics simulations using the atomic structure of the bacterial transporter vSGLT suggest that water permeates the same path as Na+ and sugar. On a structural model of SGLT1, based on the homology structure of vSGLT, we identified and mutated residues lining the sugar transport pathway to cysteine. The mutants were expressed in Xenopus oocytes, and the unitary water and urea permeabilities were determined before and after modifying the cysteine side chain with reversible methanethiosulfonate reagents. The results demonstrate that water and urea follow the sugar transport pathway through SGLT1. The changes in permeability, increases or decreases, with side-chain modifications depend on the location of the mutation in the region of external or internal gates, or the sugar binding site. These changes in permeability are hypothesized to be due to alterations in steric hindrance to water and urea, and/or changes in protein folding caused by mismatching of side chains in the water pathway. Water permeation through SGLT1 and other transporters bears directly on the structural mechanism for the transport of polar solutes through these proteins. Finally, in vitro experiments on mouse small intestine show that SGLT1 accounts for two-thirds of the passive water flow across the gut.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...