ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-04-01
    Print ISSN: 1545-598X
    Electronic ISSN: 1558-0571
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The proposed Aerosol/Cloud/Ecosystems (ACEs) mission development would advance cloud profiling radar from that used in CloudSat by adding a 35-GHz (Ka-band) channel to the 94-GHz (W-band) channel used in CloudSat. In order to illuminate a single antenna, and use CloudSat-like quasi-optical transmission lines, a spatial diplexer is needed to add the Ka-band channel. A dichroic filter separates Ka-band from W-band by employing advances in electrical discharge machining (EDM) and mode-matching analysis techniques developed and validated for designing dichroics for the Deep Space Network (DSN), to develop a preliminary design that both met the requirements of frequency separation and mechanical strength. First, a mechanical prototype was built using an approximately 102-micron-diameter EDM process, and tolerances of the hole dimensions, wall thickness, radius, and dichroic filter thickness measured. The prototype validated the manufacturing needed to design a dichroic filter for a higher-frequency usage than previously used in the DSN. The initial design was based on a Ka-band design, but thicker walls are required for mechanical rigidity than one obtains by simply scaling the Ka-band dichroic filter. The resulting trade of hole dimensions for mechanical rigidity (wall thickness) required electrical redesign of the hole dimensions. Updates to existing codes in the linear solver decreased the analysis time using mode-matching, enabling the electrical design to be realized quickly. This work is applicable to missions and instruments that seek to extend W-band cloud profiling measurements to other frequencies. By demonstrating a dichroic filter that passes W-band, but reflects a lower frequency, this opens up the development of instruments that both compare to and enhance CloudSat.
    Keywords: Man/System Technology and Life Support
    Type: NPO-48174 , NASA Tech Briefs, June 2012; 13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper provides a summary of the results of an attempt at experimental verification of the propagation of electromagnetic surface waves at microwaves frequencies, in and along the uniform dielectric coating of a circular cylindrical metal pipe, based on the previously established theoretical investigation. These experimental results are of value for the diagnostic of anomalies on the surface of tar-coated pipes used in protecting the underground power transmission cables (feeder pipes). A test-bed was designed and implemented using an aluminum tubes (10 diameter) with an acrylic tube coating (0.25 thickness). Two identical wave launcher/receiver arrays, each of 32 elements around the tube for relatively uniform radiation/reception, were designed and fabricated at the frequency of interest (~6 GHz). This arrangement was put in a specially designed small anechoic chamber and attached to a network analyzer. A variety of tests were performed to establish the launch efficiency, prove surface wave propagation along, and reflection from different types of anomalies on the coating. In the paper, a number of test results and supporting graphs will be provided and future work for improving the performance of the launch array and the test-bed arrangement for better results will be outlined.
    Keywords: Mechanical Engineering
    Type: JPL-CL-16-0071 , IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: The NASA Deep Space Network (DSN) uses commercial waveguide windows on the output waveguide of Ka-band (32 GHz) low-noise amplifiers. Mechanical failure of these windows resulted in an unacceptable loss in tracking time. To address this issue, a new Ka-band WR-28 waveguide window has been designed, fabricated, and tested. The window uses a slab of low-loss, low-dielectric constant foam that is bonded into a 1/2-wave-thick waveguide/flange. The foam is a commercially available, rigid, closed-cell polymethacrylimide. It has excellent electrical properties with a dielectric constant of 1.04, and a loss tangent of 0.01. It is relatively strong with a tensile strength of 1 MPa. The material is virtually impermeable to helium. The finished window exhibits a leak rate of less than 3x10(exp -3)cu cm/s with helium. The material is also chemically resistant and can be cleaned with acetone. The window is constructed by fabricating a window body by brazing a short length of WR-28 copper waveguide into a standard rectangular flange, and machining the resulting part to a thickness of 4.6 mm. The foam is machined to a rectangular shape with a dimension of 7.06x3.53 mm. The foam is bonded into the body with a two-part epoxy. After curing, the excess glue and foam are knife-trimmed by hand. The finished window has a loss of less than 0.08 dB (2%) and a return loss of greater than 25 dB at 32 GHz. This meets the requirements for the DSN application. The window is usable for most applications over the entire 26-to-40-GHz waveguide band. The window return loss can be tuned to a required frequency by var y in g the thickness of the window slightly. Most standard waveguide windows use a thin membrane of material bonded into a recess in a waveguide flange, or sandwiched between two flanges with a polymer seal. Designs using the recessed window are prone to mechanical failure over time due to constraints on the dimensions of the recess that allow the bond to fail. Designs using the sandwich method are often permeable to helium, which prohibits the use of helium leak detection. At the time of this reporting, 40 windows have been produced. Twelve are in operation with a combined operating time of over 30,000 hours without a failure.
    Keywords: Man/System Technology and Life Support
    Type: NPO-48372 , NASA Tech Briefs, Februrary 2013; 9
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-01-07
    Description: No abstract available
    Keywords: Communications and Radar
    Type: JPL-CL-16-3516 , U.S. Radio/Millimeter/Submillimeter Science Futures; Aug 03, 2016 - Aug 05, 2016; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The NASA Deep Space Network (DSN) has a new requirement to support high-data-rate Category A (Cat A) missions (within 2 million kilometers of Earth) with simultaneous S-band uplink, S-band downlink and Ka-band downlink. The S-band links are required for traditional TT&C (Telemetry, Tracking, and Command) support to the spacecraft, while the Ka-band link is intended for high-data-rate science returns. The new Ka-band system combines the use of proven DSN cryogenic designs, for low system temperature, and high data rate capability using commercial telemetry receivers. The initial Cat A support is required for the James Webb Space Telescope (JWST) in 2013 and possibly other missions. The upgrade has been implemented into 3 different 34-meter Beam Waveguide (BWG) antennas in the DSN, one at each of the complexes in Canberra (Australia), Goldstone (California) and Madrid (Spain). System test data is presented to show that the requirements were met and the DSN is ready for Cat A Ka-band operational support.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking; Lunar and Planetary Science and Exploration; Communications and Radar
    Type: IAC-09-B2.4.6 , International Astronautical Congress; Oct 12, 2009 - Oct 16, 2009; Daejeon; Korea, Republic of
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: A multi-step Ka/Ka dichroic plate Frequency Selective Surface (FSS structure) is designed, manufactured and tested for use in NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antennas. The proposed design allows ease of manufacturing and ability to handle the increased transmit power (reflected off the FSS) of the DSN BWG antennas from 20kW to 100 kW. The dichroic is designed using HFSS and results agree well with measured data considering the manufacturing tolerances that could be achieved on the dichroic.
    Keywords: Communications and Radar
    Type: IEEE International Symposium on Antennas and Propagation and USNC-URSI; Jul 07, 2013 - Jul 13, 2013; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...