ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 42 (1994), S. 27-35 
    ISSN: 1573-5079
    Keywords: biosynthesis of pheophytin a and chlorophyll a ; etiolated leaves ; Photosystem II ; reaction centres
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Illumination of etiolated maize leaves with low-intensity light produces a chlorophyll/pheophytin-containing complex. The complex contains two native chlorophyll forms Chl 671/668 and Chl 675/668 as well as pheophytin Pheo 679/675 (with chlorophyll/pheophytin ratio of 2/1). The complex is formed in the course of two successive reactions: reaction of protochlorophyllide Pchlde 655/650 photoreduction resulted in chlorophyllide Chlde 684/676 formation, and the subsequent dark reaction of Chlde 684/676 involving Mg substitution by H2 in pigment chromophore and pigment esterification by phytol. Out data show that the reaction leading to chlorophyll/pheophytin-containing complex formation is not destructive. The reaction is in fact biosynthetic, and is competitive with the known reactions of biosynthesis of the bulk of chlorophyll molecules. The relationship between chlorophyll and pheophytin biosynthesis reactions is controlled by temperature, light intensity and exposure duration. The native complex containing pheophytin a and chlorophyll a is supposed to be a direct precursor of the PS II reaction centre in plant leaves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: chlorophyll a biosynthesis ; deuterium oxide substitution ; inhibition of chlorophyll biosynthesis ; protochlorophyllide phototransformation ; maize (Zea mays)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By spectral methods, the final stages of chlorophyll formation from protochlorophyllide proceeding in intact greening maize leaves were studied before and after the introduction of heavy water (D2O) into etiolated leaves. Three effects of D2O introduction were observed: 1) a complete inhibition of the reaction pathway leading to pheophytin biosynthesis and formation of pheophytin/chlorophyll-containing complexes (presumably, direct precursors of Photosystem II reaction centers): 2) 5-fold inhibition of the reaction of the Shibata shift ; 3) appearance of a new dark reaction of the primary chlorophyllide native form Chld 684/676→ 'Chld 690/680'. It was shown that the intermediate Chld 684/676 presents the point of a triple branching of chlorophyllide transformation; activities of these three parallel pathways of Chld 684/676 transformation can be regulated by light intensity as well as by temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5079
    Keywords: chlorophyll a biosynthesis ; etiolated leaves ; heat shock ; maize ; pea ; pea mutants ; Photosystem II core ; protochlorophyllide photoreduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Preliminary dark incubation of etiolated pea and maize plants at 38 °C allowed to observe a new dark reaction of Chl biosynthesis occuring after photoconversion of protochlorophyllide Pchld 655/650 into chlorophyllide Chld 684/676. This reaction was accompanied by chlorophyllide esterification and by the bathochromic shift of pigment spectra: Chld 684/676 → Chl 688/680. After completion of the reaction, a rapid (20–30 s at 26 °C) quenching of Chl 688/680 low-temperature fluorescence was observed. The reaction Chld 684/676 → Chl 688/680 was inhibited under anaerobic conditions as well as in the presence of KCN; the reaction accompanied by Chl fluorescence quenching was inhibited in the leaves of pea mutants with impaired function of Photosystem II reaction centers. The spectra position of newly formed Chl, effects of Chl fluorescence quenching allowed to assume that the new dark reaction is responsible for biosynthesis of P–680, the key pigment of Photosystem II reaction centres.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5079
    Keywords: biosynthesis of pheophytin a and chlorophyll a ; etiolated leaves ; pheophytin/chlorophyll interconversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Upon illumination of etiolated maize leaves the photoconversion of protochlorophyllide Pchlide 655/650 into chlorophyllide Chlide 684/676 was observed. It was shown that chlorophyllide Chlide 684/676 in the dark is transformed into pheophytin Pheo 679/675 and chlorophyll Chl 671/668 by means of two parallel reactions, occurring at room temperature: Chlide 684/676. The formed pheophytin Pheo 679/675 was unstable and in the dark was transformed into chlorophyll Chl 671/668 in a few seconds: Pheo 679/675 → Chl 671/668. The last reaction is reversed by the light: Chl/668 Pheo 679/675. Thus, on the whole in the greening etiolated leaves this process occurs according to the following scheme: The observed light-regulated interconversion of Mg-containing and Mg-free chlorophyll analogs is activated by ATP and inhibited by AMP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5079
    Keywords: biosynthesis of chlorophyll a ; Chlorella vulgaris ; green alga mutants ; long-wavelength protochlorophyll
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By spectral methods, the final stages of chlorophyll formation from protochlorophyll (ide) were studied in heterotrophic cells of Chlorella vulgaris B-15 mutant, where chlorophyll dark biosynthesis is inhibited. It was shown that during the dark cultivation, in the mutant cells, in addition to the well-known protochlorophyll (ide) forms Pchlide 655/650, Pchl(ide) 640/635, Pchl(ide) 633/627, a long-wavelength protochlorophyll form is accumulated with fluorescence maximum at 682 nm and absorption maximum at 672 nm (Pchl 682/672). According to the spectra measured in vivo and in vitro, illumination of dark grown cells leads to the photoconversion of Pchl 682/672 into the stable long wavelength chlorophyll native form Chl 715/696. This reaction was accompanied by well-known photoreactions of shorter-wavelength Pchl (ide) forms: Pchlide 655/650→Chlide 695/684 and Pchl (ide) 640/635→Chl (ide) 680/670. These three photoreactions were observed at room temperature as well as at low temperature (203–233 K).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-01-01
    Print ISSN: 0006-3495
    Electronic ISSN: 1542-0086
    Topics: Biology , Physics
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...