ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-10-25
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-03-01
    Print ISSN: 0295-5075
    Electronic ISSN: 1286-4854
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Change to upright posture results in reductions in cerebral perfusion pressure due to hydrostatic pressure changes related to gravity. Since vestibular organs, specifically the otoliths, provide information on position relative to gravity, vestibular inputs may assist in adaptation to the upright posture. The goal of this study was to examine the effect of direct vestibular stimulation on cerebral blood flow (CBF). To examine the role of otolith inputs we screened 165 subjects for vestibular function and classified subjects as either normal or impaired based on ocular torsion. Ocular torsion, an indication of otolith function, was assessed during sinusoidal roll tilt of 20 degrees at 0.01 Hz (100 sec per cycle). Subjects with torsion one SD below the mean were classified as impaired while subjects one SD above the mean were considered normal. During one session subjects were placed in a chair that was sinusoidally rotated 25 degrees in the roll plane at five frequencies: 0.25 & 0.125 Hz for 80 sec, 0.0625 Hz for 160 sec and 0.03125 Hz and 0.015625 Hz for 320 sec. During testing, CBF (transcranial Doppler), blood pressure (Finapres), and end tidal CO2 (Puritan Bennet) were measured continuously. Ocular torsion was assessed from infrared images of the eyes. All rotations were done in the dark with subjects fixated on a red LED directly at the center of rotation. In the normal group, dynamic tilt resulted in significant changes in both blood pressure and cerebral blood flow velocity that was related to the frequency of stimulus. In contrast the impaired group did not show similar patterns. As expected normal subjects demonstrated significant ocular torsion that was related to stimulus frequency while impaired subjects had minimal changes. These data suggest that vestibular inputs have direct effects on cerebral blood flow regulation during dynamic tilt. Supported by NASA.
    Keywords: Aerospace Medicine
    Type: Human Research Program Investigators'' Workshop; Feb 04, 2008 - Feb 06, 2008; League City, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: OBJECTIVES. This study aimed to quantify the complex dynamics of beat-to-beat sinus rhythm heart rate fluctuations and to determine their differences as a function of gender and age. BACKGROUND. Recently, measures of heart rate variability and the nonlinear "complexity" of heart rate dynamics have been used as indicators of cardiovascular health. Because women have lower cardiovascular risk and greater longevity than men, we postulated that there are important gender-related differences in beat-to-beat heart rate dynamics. METHODS. We analyzed heart rate dynamics during 8-min segments of continuous electrocardiographic recording in healthy young (20 to 39 years old), middle-aged (40 to 64 years old) and elderly (65 to 90 years old) men (n = 40) and women (n = 27) while they performed spontaneous and metronomic (15 breaths/min) breathing. Relatively high (0.15 to 0.40 Hz) and low (0.01 to 0.15 Hz) frequency components of heart rate variability were computed using spectral analysis. The overall "complexity" of each heart rate time series was quantified by its approximate entropy, a measure of regularity derived from nonlinear dynamics ("chaos" theory). RESULTS. Mean heart rate did not differ between the age groups or genders. High frequency heart rate power and the high/low frequency power ratio decreased with age in both men and women (p 〈 0.05). The high/low frequency power ratio during spontaneous and metronomic breathing was greater in women than men (p 〈 0.05). Heart rate approximate entropy decreased with age and was higher in women than men (p 〈 0.05). CONCLUSIONS. High frequency heart rate spectral power (associated with parasympathetic activity) and the overall complexity of heart rate dynamics are higher in women than men. These complementary findings indicate the need to account for gender-as well as age-related differences in heart rate dynamics. Whether these gender differences are related to lower cardiovascular disease risk and greater longevity in women requires further study.
    Keywords: Life Sciences (General)
    Type: Journal of the American College of Cardiology (ISSN 0735-1097); 24; 7; 1700-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: BACKGROUND. Although postprandial hypotension is a common cause of falls and syncope in elderly persons and in patients with autonomic insufficiency, the pathophysiology of this disorder remains unknown. METHODS AND RESULTS. We examined the hemodynamic, splanchnic blood pool, plasma norepinephrine (NE), and heart rate (HR) power spectra responses to a standardized 400-kcal mixed meal in 11 healthy young (age, 26 +/- 5 years) and nine healthy elderly (age, 80 +/- 5 years) subjects and 10 dysautonomic patients with symptomatic postprandial hypotension (age, 65 +/- 16 years). Cardiac and splanchnic blood pools were determined noninvasively by radionuclide scans, and forearm vascular resistance was determined using venous occlusion plethysmography. In healthy young and old subjects, splanchnic blood volume increased, but supine blood pressure remained unchanged after the meal. In both groups, HR increased and systemic vascular resistance remained stable. Forearm vascular resistance and cardiac index increased after the meal in elderly subjects, whereas these responses were highly variable and of smaller magnitude in the young. Young subjects demonstrated postprandial increases in low-frequency HR spectral power, representing cardiac sympatho-excitation, but plasma NE remained unchanged. In elderly subjects, plasma NE increased after the meal but without changes in the HR power spectrum. Patients with dysautonomia had a large postprandial decline in blood pressure associated with no change in forearm vascular resistance, a fall in systemic vascular resistance, and reduction in left ventricular end diastolic volume index. HR increased in these patients but without changes in plasma NE or the HR power spectrum. CONCLUSIONS. 1) In healthy elderly subjects, the maintenance of blood pressure homeostasis after food ingestion is associated with an increase in HR, forearm vascular resistance, cardiac index, and plasma NE. In both young and old, systemic vascular resistance is maintained. 2) Dysautonomic patients with postprandial hypotension fail to maintain systemic vascular resistance after a meal. This impairment in vascular response to meal ingestion may underlie the development of postprandial hypotension. 3) The measurement of mean HR or plasma NE does not adequately characterize autonomic cardiac control. Power spectral analysis suggests an impairment in the postprandial autonomic modulation of HR in healthy elderly and dysautonomic subjects, possibly predisposing to hypotension when vascular compensation is inadequate.
    Keywords: Life Sciences (General)
    Type: Circulation (ISSN 0009-7322); 87; 2; 391-400
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The concept of "complexity," derived from the field of nonlinear dynamics, can be adapted to measure the output of physiologic processes that generate highly variable fluctuations resembling "chaos." We review data suggesting that physiologic aging is associated with a generalized loss of such complexity in the dynamics of healthy organ system function and hypothesize that such loss of complexity leads to an impaired ability to adapt to physiologic stress. This hypothesis is supported by observations showing an age-related loss of complex variability in multiple physiologic processes including cardiovascular control, pulsatile hormone release, and electroencephalographic potentials. If further research supports this hypothesis, measures of complexity based on chaos theory and the related geometric concept of fractals may provide new ways to monitor senescence and test the efficacy of specific interventions to modify the age-related decline in adaptive capacity.
    Keywords: Life Sciences (General)
    Type: JAMA : the journal of the American Medical Association (ISSN 0098-7484); 267; 13; 1806-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We postulated that aging is associated with disruption in the fractallike long-range correlations that characterize healthy sinus rhythm cardiac interval dynamics. Ten young (21-34 yr) and 10 elderly (68-81 yr) rigorously screened healthy subjects underwent 120 min of continuous supine resting electrocardiographic recording. We analyzed the interbeat interval time series using standard time and frequency domain statistics and using a fractal measure, detrended fluctuation analysis, to quantify long-range correlation properties. In healthy young subjects, interbeat intervals demonstrated fractal scaling, with scaling exponents (alpha) from the fluctuation analysis close to a value of 1.0. In the group of healthy elderly subjects, the interbeat interval time series had two scaling regions. Over the short range, interbeat interval fluctuations resembled a random walk process (Brownian noise, alpha = 1.5), whereas over the longer range they resembled white noise (alpha = 0.5). Short (alpha s)- and long-range (alpha 1) scaling exponents were significantly different in the elderly subjects compared with young (alpha s = 1.12 +/- 0.19 vs. 0.90 +/- 0.14, respectively, P = 0.009; alpha 1 = 0.75 +/- 0.17 vs. 0.99 +/- 0.10, respectively, P = 0.002). The crossover behavior from one scaling region to another could be modeled as a first-order autoregressive process, which closely fit the data from four elderly subjects. This implies that a single characteristic time scale may be dominating heartbeat control in these subjects. The age-related loss of fractal organization in heartbeat dynamics may reflect the degradation of integrated physiological regulatory systems and may impair an individual's ability to adapt to stress.
    Keywords: Life Sciences (General)
    Type: The American journal of physiology (ISSN 0002-9513); 271; 4 Pt 2; R1078-84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Biomedical signals often vary in a complex and irregular manner. Analysis of variability in such signals generally does not address directly their complexity, and so may miss potentially useful information. We analyze the complexity of heart rate and beat-to-beat blood pressure using two methods motivated by nonlinear dynamics (chaos theory). A comparison of a group of healthy elderly subjects with healthy young adults indicates that the complexity of cardiovascular dynamics is reduced with aging. This suggests that complexity of variability may be a useful physiological marker.
    Keywords: Life Sciences (General)
    Type: Biophysical journal (ISSN 0006-3495); 59; 4; 945-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Prior studies suggest that postprandial hypotension in elderly persons may be due to defective sympathetic nervous system activation. We examined autonomic control of heart rate (HR) after a meal using spectral analysis of HR data in 13 old (89 +/- 6 years) and 7 young (24 +/- 4 years) subjects. Total spectral power, an index of overall HR variability, was calculated for the frequency band between 0.01 and 0.40 Hz. Relatively low-frequency power, associated with sympathetic nervous system and baroreflex activation, was calculated for the 0.01 to 0.15 Hz band. High-frequency power, representing parasympathetic influences on HR, was calculated for the 0.15 to 0.40 Hz band. Mean arterial blood pressure declined 27 +/- 8 mm Hg by 60 minutes after the meal in elderly subjects, compared with 9 +/- 8 mm Hg in young subjects (p less than or equal to 0.0001, young vs old). The mean change in low-frequency HR power from 30 to 50 minutes after the meal was +19.4 +/- 25.3 U in young subjects versus -0.1 +/- 1.5 U in old subjects (p less than or equal to 0.02). Mean change in total power was also greater in young (19.0 +/- 26.6 U) subjects compared with old subjects (0.0 +/- 1.6 U, p greater than or equal to 0.02). Mean ratio of low:high-frequency power increased 3.1 +/- 3.3 U in young subjects vs 0.5 +/- 2.7 U in old subjects (p less than or equal to 0.01). The increase in low-frequency HR power and in the low:high frequency band ratio in young subjects is consistent with sympathetic activation in the postprandial period.(ABSTRACT TRUNCATED AT 250 WORDS).
    Keywords: Life Sciences (General)
    Type: The American journal of cardiology (ISSN 0002-9149); 69; 3; 201-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: OBJECTIVE--To investigate the alterations in autonomic control of heart rate at high altitude and to test the hypothesis that hypoxaemic stress during exposure to high altitude induces non-linear, periodic heart rate oscillations, similar to those seen in heart failure and the sleep apnoea syndrome. SUBJECTS--11 healthy subjects aged 24-64. MAIN OUTCOME MEASURES--24 hour ambulatory electrocardiogram records obtained at baseline (1524 m) and at 4700 m. Simultaneous heart rate and respiratory dynamics during 2.5 hours of sleep by fast Fourier transform analysis of beat to beat heart rate and of an electrocardiographically derived respiration signal. RESULTS--All subjects had resting hypoxaemia at high altitude, with an average oxyhaemoglobin saturation of 81% (5%). There was no significant change in mean heart rate, but low frequency (0.01-0.05 Hz) spectral power was increased (P 〈 0.01) at high altitude. Time series analysis showed a complex range of non-linear sinus rhythm dynamics. Striking low frequency (0.04-0.06 Hz) heart rate oscillations were observed during sleep in eight subjects at high altitude. Analysis of the electrocardiographically derived respiration signal indicated that these heart rate oscillations correlated with low frequency respiratory oscillations. CONCLUSIONS--These data suggest (a) that increased low frequency power during high altitude exposure is not simply attributable to increased sympathetic modulation of heart rate, but relates to distinctive cardiopulmonary oscillations at approximately 0.05 Hz and (b) that the emergence of periodic heart rate oscillations at high altitude is consistent with an unstable cardiopulmonary control system that may develop on acute exposure to hypoxaemic stress.
    Keywords: Aerospace Medicine
    Type: British heart journal (ISSN 0007-0769); 74; 4; 390-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...