ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-11-29
    Description: Reduction of the primary energy consumption is a crucial challenge for the building sector due to economic and environmental issues. Substantial savings could be achieved within the household. In this paper, we investigate the energy performance of a single-family house located in the temperate climate. The assessment is based on the comprehensive thermal diagnostic of the building performed on-site and via computational analyses. The on-site measurements included diagnostics of the building envelope, heat source, heating and domestic hot water system, ventilation system, and indoor environmental quality. Analyses confirmed that the studied building, which was built in 2008, meets the legislation requirements for the primary energy usage at that time and nowadays. However, results show discrepancies between energy performance obtained through on-site measurements and computational methods following regulations. Partially, discrepancies are a result of differences on normative values and how the building is operated in practice. It is also showed how important the role in the assessment of energy consumption through measurements is played by the measurement period.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-20
    Description: The energy consumption of purely convective (i.e., various air volume (VAV) mixing ventilation) and combined radiant and convective HVAC systems (chilled ceiling combined with mixing ventilation—CCMV or personalized ventilation—CCPV) was investigated with multi-variant simulations carried out the IDA Indoor Climate and Energy software. We analyzed three different climates: temperate, hot and humid, and hot and dry. Our results show that the use of CCPV substantially reduced energy consumption compared to the conventional VAV system in hot climates. We also show that increasing the room temperature to 28 °C is an effective energy-saving strategy that can reduce consumption by as much as 40%. In the temperate climate, the VAV system was preferable because it used less energy as it benefited from outdoor air free-cooling. The control strategy of the supply temperature of personalized air had an impact on the energy demand of the HVAC system. The most efficient control strategy of the CCPV system was to increase the room temperature and keep the supply air temperature in the range of 20–22 °C. This approach consumed less energy than VAV or CCMV, and also improved the relative humidity in the hot climate.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...