ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2018-01-15
    Description: The nonsphericity and inhomogeneity of marine aerosols (sea salts) have not been addressed in pertinent radiative transfer calculations and remote sensing studies. This study investigates the optical properties of nonspherical and inhomogeneous sea salts using invariant imbedding T-matrix simulations. Dry sea salt aerosols are modeled based on superellipsoidal geometries with a prescribed aspect ratio and roundness parameter. Wet sea salt particles are modeled as coated superellipsoids, as spherical particles with a superellipsoidal core, and as homogeneous spheres depending on the level of relative humidity. Aspect ratio and roundness parameters are found to be critical to interpreting the linear depolarization ratios (LDRs) of NaCl crystals from laboratory measurements. The optimal morphology parameters of NaCl necessary to reproduce the measurements are found to be consistent with data gleaned from an electron micrograph. The LDRs of wet sea salts are computed based on inhomogeneous models and compared with the measured data from ground-based LiDAR. The dependence of the LDR on relative humidity is explicitly considered. The increase in the LDR with relative humidity at the initial phase of deliquescence is attributed to both the size increase and the inhomogeneity effect. For large humidity values, the LDR substantially decreases because the overall particle shape becomes more spherical and the inhomogeneity effect in a particle on the LDR is suppressed for submicron sea salts. However, the effect of inhomogeneity on optical properties is pronounced for coarse-mode sea salts. These findings have important implications for atmospheric radiative transfer and remote sensing involving sea salt aerosols. ©2017. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-27
    Description: Atmospheric dust particles are known to have diverse and irregular morphologies. In order to account for nonsphericity, the spheroidal model with an aspect ratio distribution has been extensively used for modeling the optical properties of dust. The spheroidal model is superior to the spherical shape assumption, but it requires further improvement. In this study, superspheroids' modeling capabilities were systematically examined by comprehensively comparing the spheroid's and superspheroid's scattering matrices. Superspheroids have one more degree of freedom than spheroids and can be nonspherical at an aspect ratio of unity. The invariant imbedding T-matrix and the improved geometrical optics methods were employed to compute superspheroids' single-scattering properties with a wide distribution of aspect ratios and a number of roundness parameters. We then assessed the spheroidal and superspheroidal models' applicability for simulating the scattering matrices of 25 dust samples from the Amsterdam-Granada Light Scattering Database. It was found that extreme aspect ratios for spheroids in reproducing the measurements were unnecessary if superspheroids were used. Even with equi-probable aspect ratio distribution, superspheroids with constrained roundness parameters (from 2.4 to 3.0) could achieve better performances in concurrently matching six nonzero scattering matrix elements from the laboratory measurements. Moreover, superspheroids demonstrated better performances than spheroids in achieving spectral consistency for modeling dust scattering matrices. Therefore, superspheroids appear to be highly promising for atmospheric radiative transfer and remote sensing applications. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...