ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2011-11-24
    Description: The ammonia–water absorption cycle could transfer thermal energy into chemical energy by the change in solution concentration, which low-grade heat released by industry-concentrated areas could be utilized to provide heating or cooling in the user site over long distance. No heat insulation is required for the transportation pipelines and the energy consumption is reduced greatly. The simulation researches show that thermal coefficient of performance (COP) is at 0.5 and exergy efficiency is 〉0.2 when generation temperature is at 110°C to provide cooling in summer; thermal COP is at 0.6 and exergy efficiency is 〉0.3 to provide heating in winter. Electrical COP as high as 50 could be realized if the transportation distance is 〉50 km. Therefore, the COP of the system is determined by thermal COP (nearly equal). An experimental prototype has been built to testify this theory. Thermal COP is 0.43 when chilled water at 8°C is obtained in summer. In winter, thermal COP is 0.45 when hot water at 58°C is obtained. The deviations between experimental and simulation results are ~20%. The economic assessment based on the reasonable assumptions shows that the investment cost of the transportation pipelines of a 500 MW, 50 km system could be recovered within 15 months, in which the whole system costs could be recovered within 4 years.
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...