ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉Traditional methods for imaging salt bodies seldom consider near-salt stress perturbations caused by salt, and the associated velocity perturbations of seismic waves in the sediments near the salt. To demonstrate the importance of stress changes caused by the salt on accurately imaging salt bodies, in this study we develop and apply a combined method of geomechanical stress modelling and salt imaging. We simulate the stress perturbations in sediments induced by a salt sphere using a static geomechanical model, and calculate the associated velocity changes of seismic waves in the sediments by using our model stress perturbations. We use the reverse time migration and imaging method to image the salt sphere, and then analyse the imaging results of two cases including and excluding the effects of stress perturbations by the salt sphere on velocity changes of seismic waves. The results show that the near-salt velocity changes of seismic waves induced by stress perturbations near salt bodies can have a significant impact on the salt imaging. We find that when the effects of near-salt stress perturbations are ignored, the imaging of the salt sphere is clearly distorted: the salt sphere is extended vertically and becomes a salt ellipse with a vertical major axis. In contrast, when we include the effects of near-salt stress perturbations, the imaging of this salt sphere accurately matches the salt geometry and position. Thus, the near-salt stress perturbations should not be ignored in salt imaging. This study provides scientific insights for petroleum geologists and exploration geophysicists on the relationship between near-salt stress perturbations and accurate imaging of salt structures.〈/span〉
    Print ISSN: 1354-0793
    Electronic ISSN: 2041-496X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉Traditional methods for imaging salt bodies seldom consider near-salt stress perturbations caused by salt, and the associated velocity perturbations of seismic waves in the sediments near the salt. To demonstrate the importance of stress changes caused by the salt on accurately imaging salt bodies, in this study we develop and apply a combined method of geomechanical stress modelling and salt imaging. We simulate the stress perturbations in sediments induced by a salt sphere using a static geomechanical model, and calculate the associated velocity changes of seismic waves in the sediments by using our model stress perturbations. We use the reverse time migration and imaging method to image the salt sphere, and then analyse the imaging results of two cases including and excluding the effects of stress perturbations by the salt sphere on velocity changes of seismic waves. The results show that the near-salt velocity changes of seismic waves induced by stress perturbations near salt bodies can have a significant impact on the salt imaging. We find that when the effects of near-salt stress perturbations are ignored, the imaging of the salt sphere is clearly distorted: the salt sphere is extended vertically and becomes a salt ellipse with a vertical major axis. In contrast, when we include the effects of near-salt stress perturbations, the imaging of this salt sphere accurately matches the salt geometry and position. Thus, the near-salt stress perturbations should not be ignored in salt imaging. This study provides scientific insights for petroleum geologists and exploration geophysicists on the relationship between near-salt stress perturbations and accurate imaging of salt structures.〈/span〉
    Print ISSN: 1354-0793
    Electronic ISSN: 2041-496X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...