ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1436-2449
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Summary α-Chloromethyl-α-methyl-β-propiolactone (CMMPL) has been copolymerized with 1,3-trimethylene carbonate (TMC) using a wide range of feed composition and 1,3-dichlorotetrabutyl-distannoxane as a catalyst. Random copolymer, P(CMMPL-co-TMC), was obtained and characterized by 1H NMR and DSC. The pendant chloromethyl groups of the copolymers are expected to be further modified by reaction with a tertiary amine containing compounds to increase the hydrophilicity of the copolymer or to conjugate bio-active residues onto the copolymer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0887-624X
    Keywords: N-(4-N′, N′-dimethylaminophenyl)maleimide ; fluoroescence structural self-quenching effect ; initiation ; polymerization ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A maleimide bearing electron-donating chromophore, N-(4-N′,N′-dimethylaminophenyl)-maleimide (DMAPMI) was synthesized from N, N-dimethylaminoaniline and maleic anhydride in the presence of acetic anhydride and sodium acetate. DMAPMI can be easily copolymerized with vinyl acetate (VAc). In addition, it can be easily homopolymerized by UV light irradiation or by using AIBN or BPO as an initiator. The fluorescence spectra of DMAPMI and its polymer or copolymer were recorded and compared at the same chromophore concentrations. It was observed that the fluorescence emission intensity of DMAPMI was much lower than those of its polymers. This may be due to the occurrence of intermolecular charge transfer interaction between the electron-donating dimethylaminophenyl moiety and acrylic electron-accepting carbon-carbon double bond in the monomer. The model compound, N-(4-N′, N′-dimethylaminophenyl)succinimide (DMAPSI), which has no carbon-carbon double bond, displayed the same fluorescence behavior as DMAPMI polymers. The fluorescence of DMAPMI polymers and DMAPSI can be quenched by electron-deficient compounds such as AN, TCNE, MMA, etc. All these results supported the above conclusion. This is another example of the “fluorescence structural self-quenching effect” termed by us previously and demonstrates again that this phenomenon is not an accidental but a general one for acrylic monomers bearing electron-donating chromophores. Study of the initiation behavior of DMAPMI and its polymer showed that they could initiate the photopolymerization of AN, by combination with BPO, they could also initiate the thermopolymerization of vinyl monomers such as MMA. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 34 (1996), S. 1881-1888 
    ISSN: 0887-624X
    Keywords: N-acryloyl-N′-phenylpiperazines ; fluorescence structural self-quenching effect ; fluorescent probe ; photopolymerization ; polymerizable sensitizers ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Two novel acrylic monomers bearing aromatic tertiary amino groups, i.e., N-acryloyl-N′-phenylpiperazine (APP) and N-methacryloyl-N′-phenylpiperazine (MPP) are synthesized by the reaction of N-phenylpiperazine and the corresponding acryloyl chlorides in the presence of triethylamine. They can be polymerized easily by using AIBN as an initiator or photopolymerized without any sensitizer. The photochemical behavior of APP, MPP, and their polymers are explored by recording the fluorescence spectra in solution. It has been found that the fluorescence intensities of these monomers are dramatically lower than those of their polymers in the same chromophore concentration, and such phenomenon is termed as “structural self-quenching effect” (SSQE). The strong fluorescence of these polymers can be quenched by adding electron-deficient monomers which have no chromophore moieties such as MMA, AN, etc., and their Stern-Volmer constants are determined. It is observed that the higher the electron-deficiencies of the quenchers, the higher the Stern-Volmer constants, which means stronger quenching effect. The SSQE displayed by APP and MPP make them useful as probes to pursue their photopolymerization process. As polymerizable aromatic tertiary amines, APP and MPP themselves or combining with organic peroxides such as BPO can initiate the photopolymerization or thermal polymerization of vinyl monomers such as MMA, AN by free radical nature, and at the same time enter the polymer chain. © 1996 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 34:1881-1888, 1996
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0887-624X
    Keywords: phenothiazine ; fluorescence ; charge transfer complex ; photoinitiation ; C60 ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Four acrylic monomers bearing phenothiazine moieties, i.e., N-acrylyl-phenothiazine (APT), N-acrylyl-2-chlorophenothiazine (ACPT), N-acrylyl-2-acetylphenothiazine (AAPT), and 10-acrylyl-1-azaphenothiazine (AAzPT) were synthesized by dehydrohalogenation of the corresponding N-(β-chloropropionyl)-substituted phenothiazine derivatives with 1,8-diazabicyclo[5.4.0]undec-5-ene (DBU). These monomers could easily be polymerized by initiation with AIBN. The emission fluorescence spectra of the monomers and their polymers were recorded, which showed that the polymers displayed much stronger fluorescence than their corresponding monomers at the same chromophore concentrations. This phenomenon, as termed as “structural self-quenching effect,” was commonly observed for acrylic monomers bearing chromophore moieties and ascribed to the coexistence of the electron-donating chromophore and the electron-accepting double bond in the same molecule. Because of the formation of exciplex, the monomer APT, as well as ACPT, AAPT, AAzPT, and their polymers, could initiate the photopolymerization of AN. The charge transfer phenomenon between P(APT), P(ACPT), and C60 was also explored. © 1996 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0887-624X
    Keywords: N-(2-(vinyloxy)ethyl)-1,8-naphthalimide ; fluorescence structural self-quenching effect ; C60 ; electron donor ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A vinyloxy monomer bearing electron-accepting chromophore, N-(2-(vinyloxy)ethyl)-1,8-naphthalimide (VOENI), was synthesized by reaction of potassium 1,8-naphthalimide with 2-chloroethyl vinyl ether. VOENI can be homopolymerized by cationic initiation and copolymerized with maleic anhydride (MAn) under radical initiation. The fluorescence behaviors of VOENI and its polymers were investigated. It has been found that the fluorescence intensity of the VOENI monomer is much lower than that of its polymers at the same chromophore concentration. This means that a “structural self-quenching effect” (SSQE) has been also observed in the vinyloxy monomer consisting of an electron-accepting chromophore, which has opposite electronic structure in comparison with acrylates bearing electron-donating chromophores as we have reported previously. The SSQE is attributed to the charge-transfer interaction between the electron-accepting chromophore and the electron-donating double bond in the same molecule. The fluorescence quenching of 1,8-naphthalic anhydride and P(VOENI-co-MAn) by ethyl vinyl ether (EVE), dihydrofuran, triethylamine (TEA), etc. evidences that the electron-rich vinyloxy group does act as an important role in the SSQE of VOENI. C60 can also quench the fluorescence of the polymers, and an upward deviation from the linearity of the Stern-Volmer plot was observed showing that C60 acted as a powerful electron donor to quench the fluorescence of the copolymer. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1111-1116, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 35 (1997), S. 1087-1093 
    ISSN: 0887-624X
    Keywords: 8-acryloyloxyquinoline ; poly(8-acryloyloxyquinoline) ; fluorescence ; polymerizable photosensitizer ; structural self-quenching effect ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Acrylic monomers bearing electron-donating quinolyl moiety, i.e., 8-acryloyloxyquinoline (AQ) was prepared and polymerized. It was found that the fluorescence intensity of AQ was much lower than that of P(AQ) at the same chromophore concentration. The fluorescence of P(AQ) could be quenched by electron-deficient vinyl monomers, such as acrylonitrile (AN) and methyl methacrylate (MMA). This is another example of the “fluorescence structural self-quenching effect” termed by us previously, and demonstrates again that this phenomenon is not an accidental but a general one for acrylic monomers bearing electron-donating chromophores. The photopolymerization of acrylonitrile (AN) sensitized by AQ and P(AQ) as well as combining with carbon tetrabromide (CBr4) was studied kinetically. From the rates of the polymerization (Rp) and overall activation energies obtained for these four systems, it was found that Rp sensitized by the binary systems was much higher than by AQ or P(AQ) alone, while the molecular weights of the resulting P(AN) were lower. The fluorescent analysis of the resulting P(AN) in solution showed that the sensitizers also entered into the P(AN) chains. A mechanism of charge transfer complex (CTC) formation was tentatively suggested for the photopolymerization of AN initiated by these four systems. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1087-1093, 1997
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-03-09
    Print ISSN: 0024-9297
    Electronic ISSN: 1520-5835
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-04-28
    Print ISSN: 0024-9297
    Electronic ISSN: 1520-5835
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-08-10
    Print ISSN: 0024-9297
    Electronic ISSN: 1520-5835
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...