ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1546-170X
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] We found that simian virus 40 (SV40) induces mesotheliomas in hamsters1 and that 60% of human mesotheiiomas contain and express SV40 sequences2, results now confirmed by others [ref. 3–5, and presentations by D. Griffiths & R. Weiss, F. Galateau-SallÈ, and H.I.P. at ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] UmuD' was purified and crystallized as described elsewhere9 and summarized in Table 1. The structure was determined by the multiwavelength anomalous diffraction (MAD) method1" from the selenomethionyl protein11. To avoid an exposed site thought to interfere with crystallization of the ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Key words Escherichia coli ; Salmonella typhimurium ; SOS mutagenesis ; Chimeric proteins ; UmuC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Unlike Escherichia coli, the closely related bacterium Salmonella typhimurium is relatively unresponsive to the mutagenic effects of DNA-damaging agents. Previous experiments have suggested that these phenotypic differences might result from reduced activity of the S. typhimurium UmuC protein. To investigate this possibility, we have taken advantage of the high degree of homology between the UmuC proteins of E. coli and S. typhimurium and have constructed a series of plasmid-encoded chimeric proteins. The possibility that the phenotypic differences might be due to differential expression of the respective UmuC proteins was eliminated by constructing chimeric proteins that retained the first 25 N-terminal amino acids of either of the UmuC proteins (and presumably the same translational signals), but substituting the remaining 397 C-terminal amino acids with the corresponding segments from the reciprocal operon. Constructs expressing mostly E. coli UmuC were moderately proficient for mutagenesis whereas those expressing mostly S. typhimurium UmuC exhibited much lower frequencies of mutation, indicating that the activity of the UmuC protein of S. typhimurium is indeed curtailed. The regions responsible for this phenotype were more precisely localized by introducing smaller segments of the S. typhimurium UmuC protein into the UmuC protein of E. coli. While some regions could be interchanged with few or no phenotypic effects, substitution of residues 212–395 and 396–422 of E. coli UmuC with those from S. typhimurium resulted in reduced mutability, while substitution of residues 26–59 caused a dramatic loss of activity. We suggest, therefore, that the primary cause for the poor mutability of S. typhimurium can be attributed to mutations located within residues 26–59 of the S. typhimurium UmuC protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 229 (1991), S. 81-85 
    ISSN: 1617-4623
    Keywords: Escherichia coli UmuD, UmuD′ ; Umuunodetection ; Chemiluminescence ; SOS mutagenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary SOS mutagenesis in prokaryotes is dependent upon the inducible activity of the chromosomally encoded UmuDC proteins, or homologous proteins such as MucAB or ImpCAB which are found on naturally occurring plasmids. Relative to Escherichia coli, however, Salmonella typhimurium is much less responsive to the mutagenic effects of DNA-damaging agents, despite the fact that it possesses both chromosomally and plasmid encoded umu-like operons. In E. coli, activation of the UmuD mutagenesis protein to UmuD′ via RecA-mediated proteolysis is a critical step in the mutation fixation pathway. We have used a polyclonal antiserum raised against the E. coli UmuD and UmuD′ proteins to show that S. typhimurium expresses cross-reacting material only after treatment with the DNA-damaging agent mitomycin C. The S. typhimurium umuDC operon, therefore, appears to be regulated by mechanisms similar to the E. coli umuDC operon. After induction, the S. typhimurium UmuD protein was processed to UmuD′ in both S. typhimurium and E. coli. However, the S. typhimurium UmuD protein appears to be cleaved more efficiently than the E. coli UmuD protein under similar conditions. The data suggest that conversion of UmuD to the mutagenically active UmuD′ is not the rate-limiting factor accounting for the weakly mutable phenotype of S. typhimurium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 233 (1992), S. 443-448 
    ISSN: 1617-4623
    Keywords: Escherichia coli umuDC mutants ; SOS mutagenesis ; PCR amplification ; DNA sequence analysis ; Chemiluminescent immunodetection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The products of the chromosomally encoded umuDC genes are directly required for mutagenesis in Escherichia coli. Strains with either umuD or umuC mutations are rendered phenotypically non-mutable. To ascertain the molecular basis of this non-mutability, we determined the DNA sequence alterations of seven chromosomal umuDC mutants. Six mutants (umuD1, umuD44, umuD77, umuC36, umuC25, and umuC104) were found to be single base-pair substitutions that resulted in missense mutations. The Tn5 transposon insertion mutation (umuC122) resulted in a missense mutation followed immediately by a termination codon, producing a truncated UmuC protein lacking 102 carboxyl-terminal amino acids. All of the mutations were found to reside in regions of the UmuD and UmuC proteins that share high homology with analogous proteins. Chemiluminescent immunoassays revealed that the umuD1, umuD44, and umuD77 mutations all resulted in a non-cleavable UmuD protein. Because UmuD cleavage is a prerequisite for mutagenesis, the lack of UmuD processing appears to be the molecular basis for the non-mutable phenotype in these strains. These studies re-emphasize the critical nature of the RecA-mediated cleavage of UmuD for inducible mutagenesis and provide insights into the functional domains of the UmuC protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Somatic cell and molecular genetics 14 (1988), S. 351-357 
    ISSN: 1572-9931
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract To determine whether DNA excision repair is enhanced in mammalian cells in response to DNA damage, as it is in bacteria as part of the SOS response, we used an expression vector-host cell reactivation assay to measure cellular DNA repair capacity. When UV-damaged chloramphenicol acetyltransferase (CAT) vector DNA was introduced into monkey cells (CV-1), the level of CAT activity was inversely related to the UV fluence due to inhibition ofcat gene expression by UV photoproducts. When CV-1 cells were treated with either UV radiation or mitomycin C, 24–48 h before transfection, CAT expression from the UV-irradiated plasmid was increased. This increase also occurred in a line of normal human cells, but not in repair-deficient human xeroderma pigmentosum cells. We confirmed that this increase in CAT expression was due to repair, and not to production of damage-free templates by recombination; the frequency of generation of supF+ recombinants after transfection with UV-irradiated pZ189 vectors carrying different point mutations in the supF gene did not significantly increase in carcinogen-treated CV-1 cells. From these results we conclude that carcinogen treatment enhances the excision-repair capacity of normal mammalian cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0730-2312
    Keywords: osteosarcoma ; chondrosarcoma ; GCT ; oncogene alterations ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We investigated the structure and the expression of various oncogenes in three of the most common human bone tumors - osteosarcoma (36 samples from 34 patients), giant cell tumor (10 patients), and chondrosarcoma (18 patients) - in an attempt to identify the genetic alterations associated with these malignancies. Alterations of RB and p53 were detected only in osteosarcomas. Alterations of c-myc, N-myc, and c-fos were detected in osteosarcomas and giant cell tumors. Ras alterations (H-ras, Ki-ras, N-ras) were rare. Chondrosarcomas did not contain any detectable genetic alterations. Our results suggest that alterations of c-myc, N-myc, and c-fos oncogenes occur in osteosarcomas, in addition to those previously described for the tumor suppressor genes RB and p53. Moreover, statistical analyses indicate that c-fos alterations occur more frequently in osteosarcoma patients with recurrent or metastatic disease. © 1996 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electrophoresis 14 (1993), S. 682-692 
    ISSN: 0173-0835
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: We describe electrophoresis and biochemical conditions that allow detection of damaged DNA-binding proteins in cell extracts. In addition, we present an overview of the damage-recognition DNA-binding proteins from eukaryotic cells and discuss their hypothetical role in DNA repair.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-06-22
    Description: Damage repair mechanisms at transcriptionally active sites during the G0/G1 phase are largely unknown. To elucidate these mechanisms, we introduced genome site-specific oxidative DNA damage and determined the role of transcription in repair factor assembly. We find that KU and NBS1 are recruited to damage sites independent of transcription. However, assembly of RPA1, RAD51C, RAD51, and RAD52 at such sites is strictly governed by active transcription and requires both wild-type Cockayne syndrome protein B (CSB) function and the presence of RNA in the G0/G1 phase. We show that the ATPase activity of CSB is indispensable for loading and binding of the recombination factors. CSB counters radiation-induced DNA damage in both cells and zebrafish models. Taken together, our results have uncovered a novel, RNA-based recombination mechanism by which CSB protects genome stability from strand breaks at transcriptionally active sites and may provide insight into the clinical manifestations of Cockayne syndrome.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1996-12-01
    Print ISSN: 0969-2126
    Electronic ISSN: 1878-4186
    Topics: Biology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...