ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-01-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: A new approach is presented to quantify upper-level moisture transport from geostationary satellite data. Daily time sequences of Geostationary Operational Environmental Satellite GOES-7 water vapor imagery were used to produce estimates of winds and water vapor mixing ratio in the cloud-free region of the upper troposphere sensed by the 6.7- microns water vapor channel. The winds and mixing ratio values were gridded and then combined to produce a parameter called the water vapor transport index (WVTI), which represents the magnitude of the two-dimensional transport of water vapor in the upper troposphere. Daily grids of WVTI, meridional moisture transport, mixing ratio, pressure, and other associated parameters were averaged to produce monthly fields for June, July, and August (JJA) of 1987 and 1988 over the Americas and surrounding oceanic regions, The WVTI was used to compare upper-tropospheric moisture transport between the summers of 1987 and 1988, contrasting the latter part of the 1986/87 El Nino event and the La Nina period of 1988. A similar product derived from the National Centers for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) 40-Year Reanalysis Project was used to help to validate the index. Although the goal of this research was to describe the formulation and utility of the WVTI, considerable insight was obtained into the interannual variability of upper-level water vapor transport. Both datasets showed large upper-level water vapor transport associated with synoptic features over the Americas and with outflow from tropical convective systems. Minimal transport occurred over tropical and subtropical high pressure regions where winds were light. Index values from NCEP-NCAR were 2-3 times larger than that determined from GOES. This difference resulted from large zonal wind differences and an apparent overestimate of upper-tropospheric moisture in the reanalysis model. A comparison of the satellite-derived monthly values between the summers of 1987 and 1988 provided some insight into the impact of the ENSO event on upper-level moisture and its transport during the period. During July 1987, a large portion of the Tropics in the eastern Pacific Ocean and Caribbean Sea was dominated by strong vapor transport in excess of 4.0 g/kg m/s, with relatively small amounts in the other months. JJA 1988 transport values reached similar magnitude and showed similar patterns for all three months. The meridional transport of upper-level water vapor indicated large poleward transport from the Tropics to the higher latitudes. This transport favored the Southern Hemisphere, with large transport occurring south of the ITCZ, which extended across the eastern Pacific and northern South America. Zonally averaged monthly transport values were shown to provide a simple way to quantify the monthly and interannual changes in water vapor transport. Zonally averaged WVTI values peaked in the Southern Hemisphere subtropics during both austral winters. In the Tropics, a single, more- pronounced peak located over the equator and south latitudes occurred in 1988 as opposed to a dual peak in 1987. The second peak around 20'N latitude is consistent with findings of others in which upper-tropospheric winds were noted to be stronger in this region during warm ENSO events. Zonally averaged meridional transport was southward for all summer months and was stronger in 1988. The asymmetric nature of the zonally averaged meridional transport (more southerly water vapor transport) was enhanced during JJA 1988, thus indicating a stronger upper- level branch of the Hadley circulation during this notably strong La Nina period.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Determining moisture variability for all weather scenes is critical to understanding the earth's hydrologic cycle and global climate changes. Remote sensing from geostationary satellites provides the necessary temporal and spatial resolutions necessary for global change studies. Due to antenna size constraints imposed with the use of microwave radiometers, geostationary satellites have carried instruments passively measuring radiation at infrared wavelengths or shorter. The shortfall of using infrared instruments in moisture studies lies in its inability to sense terrestrial radiation through clouds. Microwave emissions, on the other hand, are mostly unaffected by cloudy atmospheres. Land surface emissivity at microwave frequencies exhibit both high temporal and spatial variability thus confining moisture retrievals at microwave frequencies to over marine atmospheres (a near uniform cold background). This study intercompares the total column integrated water content Precipitable Water, (PW) as derived from both the Special Sensor Microwave Imager (SSM/I) and the Geostationary Operational Environmental Satellite (GOES) VISSR Atmospheric Sounder (VAS) pathfinder data sets. PW is a bulk parameter often used to quantify moisture variability and is important to understanding the earth's hydrologic cycle and climate system. This research has been spawned in an effort to combine two different algorithms which together can lead to a more comprehensive quantification of global water vapor. The approach taken here is to intercompare two independent PW retrieval algorithms and to validate the resultant retrievals against an existing data set, namely the European Center for Medium range Weather Forecasts (ECMWF) model analysis data.
    Keywords: Meteorology and Climatology
    Type: NASA-TM-112508 , NAS 1.15:112508 , Eighth Conference on Satellite Meteorology and Oceanography; 68-71
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: A new approach is presented to quantify upper-level moisture transport from geostationary satellite data. Daily time sequences of GOES-7 water vapor imagery were used to produce estimates of winds and water vapor mixing ratio in the upper-troposphere sensed by the 6.7-microns water vapor channel. The winds and mixing ratio values were gridded and then combined to produce a parameter called the Water Vapor Transport Index (WVTI) which represents the magnitude of the two dimensional transport of water vapor in the upper troposphere. Daily grids of WVTI, meridional moisture transport, mixing ratio, pressure and other associated parameters were averaged to produce monthly fields for June, July and August of 1987 and 1988 over the Americas and surrounding oceanic regions. The WVTI was used to compare upper-tropospheric moisture transport between the summers of 1987 and 1988, contrasting the latter part of the 1986/87 El Nino event and the La Nina period of 1988. A similar product derived from the NCEP reanalysis was used to help validate the index and understand interannual variability of moisture transport from the modeling perspective. Both datasets showed large upper-level water vapor transport associated with synoptic features over the Americas and with outflow from tropical convective systems. Minimal transport occurred over tropical and subtropical high pressure regions where winds were light. Index values from NCEP were 2-3 times larger than that determined from the GOES satellite This difference resulted from an over estimate of the zonal winds and upper-tropospheric moisture in the reanalysis model. A comparison of the satellite-derived monthly values between the summers of 1987 and 1988 provided some insight into the impact of the ENSO event on upper-level moisture and its transport during the period. During July 1987, a large portion of the tropics in the eastern Pacific Ocean and Caribbean Sea was dominated by strong vapor transport in excess of 5 g/kg/ms with relatively small amounts in the other months. In contrast, JJA 1988 showed an opposite trend with July 1988 being less dominated by tropical water vapor transport. The meridional transport of upper-level water vapor indicated significant poleward transport from the tropics to the higher latitudes. This transport favored the Southern Hemisphere with large transport occurring south of the ITCZ which extended across the eastern Pacific and northern South America. Zonally-averaged monthly transport values were shown to provide a simple way to quantify the monthly and interannual changes in water vapor transport. Zonally-averaged WVTI values peaked in the Southern Hemisphere subtropics during both Austral winters. In the tropics a single more pronounced peak located over the equator and south latitudes occurred in 1988 as opposed to a dual peak in 1987. The second peak around 20 deg.N latitude is consistent with findings of others where upper-tropospheric winds were noted to be stronger in this region during warm ENSO events. Zonally-averaged meridional transport was southward for all summer months and stronger in 1988. The asymmetric nature of the zonally-averaged meridional transport (more southerly water vapor transport) was enhanced during JJA 1998 thus indicating a stronger upper-level branch of the Hadley circulation during this notable strong La Nina period.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: GOES-7 VAS measurements during the Pathfinder period (1987-88) have been analysed to reveal seasonal and interannual variations in moisture transport. Long term measurements of quality winds and humidity from satellite estimates show superior benefit in diagnosing middle and upper tropospheric large scale climate variations such as ENSO events and direct circulation systems such as the Hadley Cell. A water Vapor Transport Index (WVTI) has been developed to diagnose preferred regions of strong moisture transport and to gauge the seasonal and interannual intensities detected in the GOES viewing area. Second-order variables that may be derived from GOES winds will be also discussed on the poster.
    Keywords: Meteorology and Climatology
    Type: Satellite Meteorology and Oceanography; May 25, 1998 - May 29, 1998; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Ever since the first satellite image loops from the 6.3 micron water vapor channel on the METEOSAT-1 in 1978, there have been numerous efforts (many to a great degree of success) to relate the water vapor radiance patterns to familiar atmospheric dynamic quantities. The realization of these efforts is becoming evident with the merging of satellite derived winds into predictive models (Velden et al., 1997; Swadley and Goerss, 1989). Another parameter that has been quantified from satellite water vapor channel measurements is upper tropospheric relative humidity (UTH) (e.g., Soden and Bretherton, 1996; Schmetz and Turpeinen, 1988). These humidity measurements, in turn, can be used to quantify upper tropospheric water vapor and its transport to more accurately diagnose climate changes (Lerner et al., 1998; Schmetz et al. 1995a) and quantify radiative processes in the upper troposphere. Also apparent in water vapor imagery animations are regions of subsiding and ascending air flow. Indeed, a component of the translated motions we observe are due to vertical velocities. The few attempts at exploiting this information have been met with a fair degree of success. Picon and Desbois (1990) statistically related Meteosat monthly mean water vapor radiances to six standard pressure levels of the European Centre for Medium Range Weather Forecast (ECMWF) model vertical velocities and found correlation coefficients of about 0.50 or less. This paper presents some preliminary results of viewing climatological satellite water vapor data in a different fashion. Specifically, we attempt to infer the three dimensional flow characteristics of the mid- to upper troposphere as portrayed by GOES VAS during the warm ENSO event (1987) and a subsequent cold period in 1998.
    Keywords: Meteorology and Climatology
    Type: NASA/TM-1998-208131 , NAS 1.15:208131 , Conference on Satellite Meteorology and Oceanography; May 25, 1998 - May 29, 1998; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: The retrieval of satellite-derived winds and moisture from geostationary water vapor imagery has matured to the point where it may be applied to better understanding longer term climate changes that were previously not possible using conventional measurements or model analysis in data-sparse regions. In this paper, upper-tropospheric circulation features and moisture transport covering ENSO periods are presented and discussed. Precursors and other detectable interannual climate change signals are analyzed and compared to model diagnosed features. Estimates of winds and humidity over data-rich regions are used to show the robustness of the data and its value over regions that have previously eluded measurement.
    Keywords: Environment Pollution
    Type: Satellite Meteology and Oceanography; Jan 10, 2000 - Jan 14, 2000; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: The research described below focuses on the use of satellite measurements to monitor both monthly and interannual changes in UT (upper tropospheric) water vapor transport. The GOES-7 Pathfinder data set is used to estimate both winds and humidity during the summers (JJA) of 1987 and 1988. These two summers are of particular importance to climate variability since they were characterized by a dramatic shift in the Southern Oscillation index (i.e., 1987 as a warm ENSO event and 1988 as a cold La-Nina period) (Arkin, 1988; Ropelewski 1988). The contrasting features of the summers of '87 and '88 are exploited to demonstrate the utility of satellite wind and humidity estimates to analyze the role of water vapor in climate change.
    Keywords: Geophysics
    Type: Global Change Studies; Jan 11, 1998 - Jan 16, 1998; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...