ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: As an approach for characterizing the molecules involved in the proliferation and differentiation of hematopoietic stem cells we have compared the ability of four murine stromal cell lines, MS-5, MS-K, both derived from Dexter cultures, BMS1 and BMS2 both derived from Whitlock-Witte cultures, to sustain murine long term hematopoiesis and to express the major hematopoietic cytokine genes. As opposed to the three other cell lines, MS-5 supports the maintenance of stem cells for up to 4-5 weeks. However, reconstituting stem cell output was reduced while clonogenic cell (day 12 and day 8 spleen colony-forming units, granulo-macrophagic, and erythroid progenitor cells) output was markedly increased. This hematopoietic-promoting activity is at least in part mediated by soluble molecules since medium conditioned with MS-5 cells was able to partially complement the nonsupportive cell line BMS1. The comparative study of the cytokine gene expression in MS-5 and in the nonsupportive cell lines included Northern blot and reverse transcriptase-polymerase chain reaction analysis of messenger RNA for interleukin-1, -3, -6, granulo-macrophagic-colony-stimulating factor (GM-CSF), granulocyte-CSF, macrophage-CSF, stem cell factor, transforming growth factor-beta, tumor necrosis factor-alpha, macrophage inflammatory protein-1 alpha, and leukemia inhibitory factor. None of these molecules or their association were found to clearly confer to the MS-5 cell line its hematopoietic-promoting activity raising the possibility that uncharacterized molecule(s) would be involved in the proliferation and differentiation of stem cells. © 1995 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-08-01
    Description: Bone marrow (BM) transplantation still must overcome multiple difficulties and should benefit from better understanding of stem-cell homing and mobilization. Here, we analyzed the involvement of several adhesion molecules in the two processes by treating mice with monoclonal antibodies against these molecules. Treatment of lethally irradiated mice grafted with isogeneic BM cells showed that at least two migration pathways are important for stem-cell homing to the BM, whereas only one of them is involved in lodging of colony-forming unit–spleen (CFU-S) in the spleen. We confirm that the VLA-4/VCAM-1 adhesion pathway is important for stem-cell homing to the BM only and show that CD44 is involved in CFU-S lodging in both BM and spleen. These results show that entry of CFU-S into the spleen is regulated. The observation that when one migration pathway is altered, CFU-S do not enter the BM via the other pathway may indicate that the two mechanisms involved in CFU-S homing into the BM are linked. The adhesion molecules VLA-4 and CD44 are also implied in the mobilization of stem cells into the blood stream of mice injected once with anti–VLA-4 or anti-CD44. Anti–VLA-4 administration led to a significant increase in circulating stem cells as early as 8 hours after treatment. Stem cells mobilized by anti–VLA-4 comprise cells with high self-renewal potential and thus may be used for long-term reconstitution of the hematopoietic tissue. © 1998 by The American Society of Hematology.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-08-01
    Description: Bone marrow (BM) transplantation still must overcome multiple difficulties and should benefit from better understanding of stem-cell homing and mobilization. Here, we analyzed the involvement of several adhesion molecules in the two processes by treating mice with monoclonal antibodies against these molecules. Treatment of lethally irradiated mice grafted with isogeneic BM cells showed that at least two migration pathways are important for stem-cell homing to the BM, whereas only one of them is involved in lodging of colony-forming unit–spleen (CFU-S) in the spleen. We confirm that the VLA-4/VCAM-1 adhesion pathway is important for stem-cell homing to the BM only and show that CD44 is involved in CFU-S lodging in both BM and spleen. These results show that entry of CFU-S into the spleen is regulated. The observation that when one migration pathway is altered, CFU-S do not enter the BM via the other pathway may indicate that the two mechanisms involved in CFU-S homing into the BM are linked. The adhesion molecules VLA-4 and CD44 are also implied in the mobilization of stem cells into the blood stream of mice injected once with anti–VLA-4 or anti-CD44. Anti–VLA-4 administration led to a significant increase in circulating stem cells as early as 8 hours after treatment. Stem cells mobilized by anti–VLA-4 comprise cells with high self-renewal potential and thus may be used for long-term reconstitution of the hematopoietic tissue. © 1998 by The American Society of Hematology.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...