ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2021-09-22
    Description: Arsenic is a carcinogenic substance, with many cases of poisoning related to arsenic pollution in groundwater. In Taiwan arsenic in groundwater caused the notorious Blackfoot disease. Methods for arsenic removal from water include precipitation, membrane processes, ion exchange, and adsorption, but these processing technologies suffer from high investment costs and complex operations. The traditional adsorption method cannot be used for arsenic removal due to its high operating costs, difficulties in recovery, and low adsorption capacity. To address these issues, this study designed an adsorption material based on biochar for arsenic removal with higher adsorption properties and easy recovery. Biochar sources are readily available from waste wood as a cheap and environmentally friendly material. The efficiency of As (III) removal is also promoted by FeCl3 and KMnO4. The objectives of this research are to obtain optimum operation conditions by assessing the effects of different iron and manganese contents, different doses, different pH and different initial concentration. The adsorption mechanism between As (III) and biochar was studied by adsorption isotherms and the kinetic model. X-ray diffraction, energy-dispersive X-ray spectroscopy and elemental analyzer analysis results show that modified biochar has major elements of Fe and Mn. There is greater magnetism, 40 emu g− 1, in the modified biochar. The maximum adsorption efficiency of 81% and 0.72 mg g− 1 capacity occurs when the ratio of Mn, Fe and C is 4:1:1. The adsorption capacity is high under higher pH with pristine biochar and 1FeC under lower pH with 1Fe2MnC. The reaction mechanism is divided into four pathways. The first pathway is the attachment of As (III) ions into the pore of biochar via physical adsorption. In the second pathway, biochar can connect with As (III) through hydrogen bonding from the function group -OH in the biochar and the As (III) itself. In the third pathway, they can contact each other by electron force when the biochar surface is filled with a positive charge. In the fourth pathway, the compounds of manganese have strong oxidizability to oxidize As (III) to As(V). The iron ions then act as a bridge connecting the biochar and the As (III), resulting in the formation of new complex compounds.
    Electronic ISSN: 2468-2039
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...