ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-12
    Description: A computer program suppresses the effects of narrow-band radio-frequency interference (RFI) on the data collected by a wide-band radar system. The need for this program arises because some advanced wide-band synthetic-aperture radar systems utilize frequency bands that include frequencies used by other radio services. In this program, the RFI environment is represented by an auto-regressive process, the frequency band of which is narrow relative to that of the radar. Most of the RFI signals, both narrow- and wide-band, are estimated in one pass of a least-mean-square (LMS) adaptive filter. The program implements three popular LMS algorithms: the time-domain LMS, the frequency-domain LMS, and the filter-bank LMS adaptive-filter algorithms. The program can be run in a manual or automatic mode. In the manual mode, the user selects the filter parameters prior to execution. In the automatic mode, the program utilizes median-filter and spectral-estimation techniques plus the variable-step-size LMS algorithm for automatic determination of filter parameters, and the parameters are adaptively changed as functions of the inputs, resulting in better overall performance.
    Keywords: Computer Programming and Software
    Type: NPO-40255 , NASA Tech Briefs, October 2004; 15-16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: Motion Measurement Processor (MMP) is one of three computer programs that are used together in the operation of a terrain-mapping dual-frequency interferometric synthetic-aperture-radar (SAR) system. The other two programs - Jurassicprok and Calibration Processor - are described in the two immediately preceding articles. MMP acquires all the motion and attitude data collected by onboard instrumentation systems, including radar, laser and camera metrology, inertial navigation systems, and Global Positioning System (GPS) receivers. MMP combines all this information and processes it into all the trajectory information needed to run Jurassicprok, which performs the interferometric processing and mapping functions. MMP includes several Kalman filters for combining and smoothing aircraft motion and attitude data, and least-squares inversion and filtering software tools for solving for interferometric baseline lengths. MMP synchronizes the motion and radar data. It combines the various measurement data into a unified, seven-dimensional reference system and puts out the resulting filtered trajectory and attitude data along with instructions for use of the data by Jurassicprok, as well as the command files used to operate Jurassicprok.
    Keywords: Man/System Technology and Life Support
    Type: NPO-40020 , NASA Tech Briefs, July 2004; 16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: A field-programmable gate array (FPGA) on a single lightweight, low-power integrated-circuit chip has been developed to implement an azimuth pre-filter (AzPF) for a synthetic-aperture radar (SAR) system. The AzPF is needed to enable more efficient use of data-transmission and data-processing resources: In broad terms, the AzPF reduces the volume of SAR data by effectively reducing the azimuth resolution, without loss of range resolution, during times when end users are willing to accept lower azimuth resolution as the price of rapid access to SAR imagery. The data-reduction factor is selectable at a decimation factor, M, of 2, 4, 8, 16, or 32 so that users can trade resolution against processing and transmission delays. In principle, azimuth filtering could be performed in the frequency domain by use of fast-Fourier-transform processors. However, in the AzPF, azimuth filtering is performed in the time domain by use of finite-impulse-response filters. The reason for choosing the time-domain approach over the frequency-domain approach is that the time-domain approach demands less memory and a lower memory-access rate. The AzPF operates on the raw digitized SAR data. The AzPF includes a digital in-phase/quadrature (I/Q) demodulator. In general, an I/Q demodulator effects a complex down-conversion of its input signal followed by low-pass filtering, which eliminates undesired sidebands. In the AzPF case, the I/Q demodulator takes offset video range echo data to the complex baseband domain, ensuring preservation of signal phase through the azimuth pre-filtering process. In general, in an SAR I/Q demodulator, the intermediate frequency (fI) is chosen to be a quarter of the range-sampling frequency and the pulse-repetition frequency (fPR) is chosen to be a multiple of fI. The AzPF also includes a polyphase spatial-domain pre-filter comprising four weighted integrate-and-dump filters with programmable decimation factors and overlapping phases. To prevent aliasing of signals, the bandwidth of the AzPF is made 80 percent of fPR/M. The choice of four as the number of overlapping phases is justified by prior research in which it was shown that a filter of length 4M can effect an acceptable transfer function. The figure depicts prototype hardware comprising the AzPF and ancillary electronic circuits. The hardware was found to satisfy performance requirements in real-time tests at a sampling rate of 100 MHz.
    Keywords: Man/System Technology and Life Support
    Type: NPO-30741 , NASA Tech Briefs, May 2005; 10-11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...