ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biomedical Engineering 7 (2005), S. 55-76 
    ISSN: 1523-9829
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Technology , Medicine
    Notes: Robust and bright light emitters, semiconductor nanocrystals [quantum dots (QDs)] have been adopted as a new class of fluorescent labels. Six years after the first experiments of their uses in biological applications, there have been dramatic improvements in understanding surface chemistry, biocompatibility, and targeting specificity. Many studies have shown the great potential of using quantum dots as new probes in vitro and in vivo. This review summarizes the recent advances of quantum dot usage at the cellular level, including immunolabeling, cell tracking, in situ hybridization, FRET, in vivo imaging, and other related technologies. Limitations and potential future uses of quantum dot probes are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 197 (1988), S. 175-183 
    ISSN: 1432-041X
    Keywords: Ca2+/Cl1− transmembrane flux ; Oocytes ; Meiotic maturation ; mRNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Poly(A)+RNA and tubulin mRNA are localized in the periphery of Xenopus oocytes and become delocalized during meiotic maturation. Delocalization of this RNA can be triggered by incubation in agents which reduce entry of calcium ions into the cell (e.g. lanthanum chloride and verapamil). Although these agents ordinarily promote meiotic maturation, addition of theophylline to the medium will inhibit maturation but not delocalization. Manipulations which prevent calcium entry without inducing meiotic maturation (e.g. calcium-free buffer) are also shown to trigger disruption of the RNA localization. In addition, manipulations which reduce chloride efflux from the cell (e.g. increasing the external chloride ion concentration with choline chloride) result in disruption of the localization of poly (A)+ RNA and tubulin mRNA without inducing meiotic maturation. The calcium-dependent chloride efflux present in Xenopus oocytes disappears after the oocyte has been stimulated to proceed through meiotic maturation. We show that reduction of the influx of calcium ions or efflux of chloride ions induces the delocalization of poly (A)+RNA and tubulin mRNA without inducing meiotic maturation. We suggest, therefore, that reducing the transmembrane movement of these ions is likely to be the natural trigger for the delocalization of poly(A)+RNA and tubulin mRNA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Meiosis ; Endoplasmic reticulum, specialized ; Cortical granules, ovum ; Xenopus laevis (Anura)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Changes in the organization of membranous structures in the amphibian oocyte cortex were studied during the process of progesterone-induced meiotic resumption. Progesterone treatment of Xenopus laevis oocytes induced short term and longer term changes in the cortical membranes. In the short term, progesterone induced a burst of endocytosis mediated through coated pits and coated vesicles. Immuno-electron-microscopic localization of progesterone suggested that the progesterone receptor, bound to its ligand, is endocytosed during progesterone-induced endocytosis. Also demonstrated was the existence of a cisternal membrane network, referred to as the primordial cortical endoplasmic reticulum, which surrounds portions of the cortical granules in oocytes. The primordial cortical endoplasmic reticulum is more highly developed in the animal hemisphere than the vegetal hemisphere. Over the long term, during the meiotic resumption, more membrane is recruited into this network to form the cortical endoplasmic reticulum observed by others in the metaphase II egg. This evidence demonstrates that the cortex serves as a site for dynamic changes in membrane organization and that the most extensive changes occur in the animal hemisphere. These data support previous observations that the animal hemisphere is better structured for sperm penetration than is the vegetal hemisphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 251 (1988), S. 129-136 
    ISSN: 1432-0878
    Keywords: Amphibian oocytes ; Meiotic maturation ; Annulate lamellae ; Cortical endoplasmic reticulum ; Freeze fracture ; Xenopus laevis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary During meiotic maturation, the cortex of oocytes of Xenopus laevis undergoes structural reorganization, visualized in this study by freeze-fracture electron microscopy. In the full-grown but immature oocyte, annulate lamellae are dispersed throughout the subcortex of the egg, 5 to 20 μm from the plasma membrane. The annulate lamellae consist of well-organized stacks of membrane with visible pores. Stimulation of meiotic maturation by progesterone leads to disruption of the annulate lamellae and formation of an elaborate cortical endoplasmic reticulum which surrounds the cortical granules and intertwines throughout the cortex of the mature egg. Pore-like structures similar to those previously observed in the subcortical annulate lamellae are observed in the mature cortical endoplasmic reticulum. The cortical endoplasmic reticulum is often in close apposition with the plasma membrane and with membranes of cortical granules, but no junctions are visualized. This study provides further evidence that the cortical endoplasmic reticulum develops during progesterone-stimulated meiotic maturation in vitro, and that the annulate lamellae are precursors to the cortical endoplasmic reticulum.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0886-1544
    Keywords: cytoskeletal sheets ; intermediate filaments ; blastomere - blastomere contact ; cross-bridges ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Mammalian eggs and embryos possess a major cytoskeletal network composed of large planar “sheets” distributed throughout the cytoplasm. Cytoskeletal sheets are found neither in mammalian somatic cells nor in eggs or embryos of non-mammals. In this study, we have investigated the structural composition of the sheets in eggs and embryos of the golden Syrian hamster by (1) analysis of replicas from quick-frozen, deep-etched specimens, (2) analysis of thick, resinembedded specimens using an intermediate voltage electron microscope (IVEM), (3) laser diffraction of EM images, (4) differential extraction with detergents, and (5) immunocytochemistry. Our results indicate that each sheet is composed of two closely apposed arrays of 10-nm filaments. Each filament within an array is held in register with its neighbor by lateral cross-bridges and the two parallel arrays of filaments are interconnected by periodic cross-bridges about 20 nm in length. Laser diffraction of negatives from IVEM images indicates that each array is composed of fibers that form a square lattice, and the two arrays are positioned in register by cross-bridges forming a single sheet. This lattice forms the skeleton of the sheets which is covered with a tightly packed layer of particulate material. By incubation in media containing different ratios of mixed-micelle detergents, it is possible to remove components sequentially from the sheets and to extract the particulate material. Immunocytochemical localization demonstrates that the sheets bind antibodies to keratin, and to a small extent actin, but do not bind antibodies to vimentin or tubulin. Examination of sheets within embryos at the time of embryonic compaction demonstrates that the sheets begin to fragment and disassemble in regions of blastomeres where desmosomes form, but undergo no structural alterations in interior and basal surfaces of the blastomeres. In regions of blastomere - blastomere contact the sheets fragment and associate with granules resembling keratohyalin granules found in keratinocytes. © 1993 Wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 35 (1993), S. 181-188 
    ISSN: 1040-452X
    Keywords: Sea urchin ; Fertilization ; Extracellular Matrix ; Egg jelly ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The egg jelly (EJ) coat which surrounds the unfertilized sea urchin egg undergoes extensive swelling upon contact with sea water, forming a threedimensional network of interconnected fibers extending nearly 50 μm from the egg surface. Owing to its solubility, this coat has been difficult to visualize by light and electron microscopy. However, Lytechinus pictus EJ coats remain intact, if the fixation medium is maintained at pH 9. The addition of alcian blue during the final dehydration step of sample preparation stains the EJ for visualization of resin embedded eggs by both light and electron microscopy. Stereo pairs taken of thick sections prepared for intermediate voltage electron microscopy (IVEM) produce a threedimensional image of the EJ network, consisting of interconnected fibers decorated along their length by globular jelly components. Using scanning electron microscopy (SEM), we have shown that before swelling, EJ exists in a tightly bound network of jelly fibers, 50-60 nm in diameter. In contrast, swollen EJ consists of a greatly extended network whose fibrous components measure 10 to 30 nm in diameter. High resolution stereo images of hydrated jelly produced by the quick-freeze/deep-etch/rotary-shadowing technique (QF/DE/RS) show nearly identical EJ networks, suggesting that dehydration does not markedly alter the structure of this extracellular matrix. © 1993 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 17 (1991), S. 294-318 
    ISSN: 0741-0581
    Keywords: Sea urchin egg ; Xenopus laevis egg ; Quick freezing ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: The surface of the unfertilized sea urchin egg is covered by the vitelline layer (VL), a fibrous extracellular matrix that contains receptors for sperm. At fertilization, cortical granule exocytosis releases enzymes and structural proteins that cause the VL to elevate and become remodelled into the mechanically and chemically tough fertilization envelope. This envelope prevents further penetration of sperm and protects the embryo during early development. A thicker, more complex vitelline envelope surrounds the Xenopus laevis egg. This fibrous coat is also restructured at fertilization to produce an impenetrable barrier to sperm. The biochemical steps that occur during self-assembly of these fertilization envelopes are reviewed, and the ultrastructural changes that occur, as seen in platinum replicas of quick-frozen, deep-etched, and rotaryshadowed eggs, are illustrated.
    Additional Material: 30 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 19 (1991), S. 380-381 
    ISSN: 0741-0581
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 13 (1989), S. 228-243 
    ISSN: 0741-0581
    Keywords: Fertilization ; Freeze-fracture ; Electron microscopy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: The quick-freeze, deep-etch, rotary-shadow technique provides a powerful tool to study the structural dynamics of extracellular matrices. Using this technique, we show that the extracellular investments of the Xenopus laevis egg are multilayered and securely anchored to the egg surface. The cortical cytoskeleton within the egg contains embedded cortical granules with surrounding endoplasmic reticulum and is capped by a thin reticular sheet that contacts the inner surface of the plasma membrane. The extracellular matrix undergoes three distinct changes at fertilization: (a) formation of a “smooth” layer below the vitelline envelope (VE), (b) transformation of the VE itself to an altered VE composed of concentric fibrous sheets, and (c) formation of a dense, “briar-patch”-like fertilization layer at the upper surface of the VE.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-05-08
    Description: Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ∼58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniform gene density over chromosomes, low repetitive sequence content (∼6%), and a high fraction of protein-coding sequence (∼39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (∼73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. The high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...