ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1984-01-01
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Seedlings of the Caesalpinoids Hymenaea courbaril, H. parvifolia and Copaifera venezuelana, emergent trees of Amazonian rainforest canopies, and of the Araucarian conifers Agathis microstachya and A. robusta, important elements in tropical Australian rainforests, were grown at 6% (shade) and 100% full sunlight (sun) in glasshouses. All species produced more leaves in full sunlight than in shade and leaves of sun plants contained more nitrogen and less chlorophyll per unit leaf area, and had a higher specific leaf weight than leaves of shade plants. The photosynthetic response curves as a function of photon flux density for leaves of shade-grown seedlings showed lower compensation points, higher quantum yields and lower respiration rates per unit leaf area than those of sun-grown seedlings. However, except for A. robusta, photosynthetic acclimation between sun and shade was not observed; the light saturated rates of assimilation were not significantly different. Intercellular CO2 partial pressure was similar in leaves of sun and shade-grown plants, and assimilation was limited more by intrinsic mesophyll factors than by stomata. Comparison of assimilation as a function of intercellular CO2 partial pressure in sun- and shade-grown Agathis spp. showed a higher initial slope in leaves of sun plants, which was correlated with higher leaf nitrogen content. Assimilation was reduced at high transpiration rates and substantial photoinhibition was observed when seedlings were transferred from shade to sun. However, after transfer, newly formed leaves in A. robusta showed the same light responses as leaves of sun-grown seedlings. These observations on the limited potential for acclimation to high light in leaves of seedlings of rainforest trees are discussed in relation to regeneration following formation of gaps in the canopy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-1561
    Keywords: Nitrosomonas europaea ; nitrification ; inhibition ; kinetics ; monoterpenes ; Sequoia sempervirens ; conifers ; nitrogen cycling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Inhibition by allelochemicals, including monoterpenes, has been suggested as a factor in the extremely low nitrification rates observed in coastal redwood forests. Similarities between the molecular structure of known nitrification inhibitors and some conifer monoterpenes have been suggested as one reason for the inhibition of autotrophic nitrifiers by conifer monoterpenes. The effect of monolerpenes on nitrification rate and growth of Nitrosomonas europaea was examined in whole-cell pure culture experiments using the five most abundant monoterpenes in coastal redwood needles. These are (in order of decreasing concentration in the needles) limonene, α-pinenc, sabinene, myrcene, and γ-terpinene. Four of the five compounds significantly inhibited growth of N. europaea in batch culture experiments. Short-term kinetic studies of the two most inhibitory monoterpenes, limonene and α-pinene, were performed on whole cells to evaluate the mode of interaction between these chemicals and nitrification rates. Inhibition constants (K i) of limonene (38 μM) and α-pinene (95 μM) were determined. Lineweaver-Burk plots of nitrification in the presence of monoterpenes appear to fit a noncompetitive inhibition model; however, the mechanisms of inhibition may be more complex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...