ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Bacteriophage D3 is capable of lysogenizing Pseudomonas aeruginosa PAO1 (serotype O5), converting the O-antigen from O5 to O16 and O-acetylating the N-acetylfucosamine moiety. To investigate the mechanism of lysogenic conversion, a 3.6 kb fragment from the D3 genome was isolated capable of mediating serotypic conversion identical to the D3 lysogen strain (AK1380). The PAO1 transformants containing this 3.6 kb of D3 DNA exhibited identical lipopolysaccharide (LPS) banding patterns to serotype O16 in silver-stained SDS–PAGE gels and displayed reactivity to an antibody specific for O-acetyl groups. Further analysis led to the identification of three open reading frames (ORFs) required for serotype conversion: an α-polymerase inhibitor (iap); an O-acetylase (oac); and a β-polymerase (wzyβ). The α-polymerase inhibitor (Iap) is capable of inhibiting the assembly of the serotype-specific O5 B-band LPS and allows the phage-encoded β-polymerase (Wzyβ) to form new β-linked B-band LPS. The D3 phage also alters the LPS by the addition of O-acetyl groups to the FucNAc residue in the O-antigen repeat unit by the action of the D3 O-acetylase (Oac). These three components form a simple yet elegant system by which bacteriophage D3 is capable of altering the surface of P. aeruginosa PAO1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: WbpM is essential for the biosynthesis of B-band lipopolysaccharide (LPS) in many serotypes of Pseudomonas aeruginosa. Homologues that can functionally complement a wbpM null mutant and that are also necessary for virulence have been identified in numerous pathogenic bacteria. WbpM and most of its homologues are large membrane proteins, which has long hampered the elucidation of their biochemical function. This paper describes the detailed characterization of WbpM using both in vivo and in vitro approaches. LacZ and PhoA fusion experiments showed that WbpM was anchored to the inner membrane via four N-terminal transmembrane domains, whereas the C-terminal catalytic domain resided in the cytoplasm. Although the membrane domains did not have any catalytic activity, complementation experiments suggested that they were important for the polymerization of high-molecular-weight B-band LPS. The biochemical characterization of a soluble truncated form of WbpM, His-S262, showed that WbpM was a C6 dehydratase specific for UDP-GlcNAc. It exhibited unusual low temperature (25–30°C) and high pH (pH 10) optima. Although WbpM possessed an altered catalytic triad composed of SMK as opposed to SYK commonly found in other dehydratases, its catalysis was very efficient, with a kcat of 168 min−1 and a kcat/Km of 58 mM−1 min−1. These unusual physico-kinetic properties suggested a potentially different mechanism of C6 dehydration for WbpM and its large homologues. His-S262 is now a precious tool for further structure–function studies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Pseudomonas aeruginosa is an opportunistic pathogen capable of producing a wide variety of virulence factors, including extracellular rhamnolipids and lipopolysaccharide. Rhamnolipids are tenso-active glycolipids containing one (mono-rhamnolipid) or two (di-rhamnolipid) l-rhamnose molecules. Rhamnosyltransferase 1 (RhlAB) catalyses the synthesis of mono-rhamnolipid from dTDP-l-rhamnose and β-hydroxydecanoyl-β-hydroxydecanoate, whereas di-rhamnolipid is produced from mono-rhamnolipid and dTDP-l-rhamnose. We report here the molecular characterization of rhlC, a gene encoding the rhamnosyltransferase involved in di-rhamnolipid (l-rhamnose-l-rhamnose-β-hydroxydecanoyl-β-hydroxydecanoate) production in P. aeruginosa. RhlC is a protein consisting of 325 amino acids with a molecular mass of 35.9 kDa. It contains consensus motifs that are found in other glycosyltransferases involved in the transfer of l-rhamnose to nascent polymer chains. To verify the biological function of RhlC, a chromosomal mutant, RTII-2, was generated by insertional mutagenesis and allelic replacement. This mutant was unable to produce di-rhamnolipid, whereas mono-rhamnolipid was unaffected. In contrast, a null rhlA mutant (PAO1-rhlA) was incapable of producing both mono- and di-rhamnolipid. Complementation of mutant RTII-2 with plasmid pRTII-26 containing rhlC restored the level of di-rhamnolipid production in the recombinant to a level similar to that of the wild-type strain PAO1. The rhlC gene was located in an operon with an upstream gene (PA1131) of unknown function. A σ54-type promoter for the PA1131–rhlC operon was identified, and a single transcriptional start site was mapped. Expression of the PA1131–rhlC operon was dependent on the P. aeruginosa rhl quorum-sensing system, and a well-conserved lux box was identified in the promoter region. The genetic regulation of rhlC by RpoN and RhlR was in agreement with the observed increasing RhlC rhamnosyltransferase activity during the stationary phase of growth. This is the first report of a rhamnosyltransferase gene responsible for the biosynthesis of di-rhamnolipid.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The structural similarity between the pilin glycan and the O-antigen of Pseudomonas aeruginosa 1244 suggested that they have a common metabolic origin. Mutants of this organism lacking functional wbpM or wbpL genes synthesized no O-antigen and produced only non-glycosylated pilin. Complementation with plasmids containing functional wbpM or wbpL genes fully restored the ability to produce both O-antigen and glycosylated pilin. Expression of a cosmid clone containing the O-antigen biosynthetic gene cluster from P. aeruginosa PA103 (LPS serotype O11) in P. aeruginosa 1244 (LPS serotype O7) resulted in the production of strain 1244 pili that contained both O7 and O11 antigens. The presence of the O11 repeating unit was confirmed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. Expression of the O-antigen biosynthesis cluster from Escherichia coli O157:H7 in strain 1244 resulted in the production of pilin that contained both the endogenous Pseudomonas as well as the Escherichia O157 O-antigens. A role for pilO in the glycosylation of pilin in P. aeruginosa is evident as the cloned pilAO operon produced glycosylated strain 1244 pilin in eight heterologous P. aeruginosa strains. Removal of the pilO gene resulted in the production of unmodified strain 1244 pilin. These results show that the pilin glycan of P. aeruginosa 1244 is a product of the O-antigen biosynthetic pathway. In addition, the structural diversity of the O-antigens used by the 1244 pilin glycosylation apparatus indicates that the glycan substrate specificity of this reaction is extremely low.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Pseudomonas aeruginosa is an opportunistic pathogen that is notorious for its intrinsic drug resistance. We have used chemical and genetic techniques to characterize three putative kinase genes that are involved in the addition of phosphate to the inner core region of P. aeruginosa lipopolysaccharide. The first gene is a waaP homologue, whereas the other two (wapP and wapQ) are unique to P. aeruginosa. Repeated attempts using a variety of membrane-stabilizing conditions to generate waaP::Gm (Gm, gentamicin) or wapP::Gm mutants were unsuccessful. We were able to generate a chromosomal waaP mutant that had a wild-type copy of either waaPPa or waaPEcin trans, but were unable to cure this plasmid-borne copy of the gene. These results are consistent with the fact that P. aeruginosa mutants lacking inner core heptose (Hep) or phosphate have never been isolated and demonstrate the requirement of Hep-linked phosphate for P. aeruginosa viability. A wapQ::Gm mutant was isolated and it had an unaltered minimum inhibitory concentration (MIC) for novobiocin and only a small decrease in the MIC for sodium dodecyl sulphate (SDS), suggesting that the loss of a phosphate group transferred by WapQ may only be having a small impact on outer-membrane permeability. Nuclear magnetic resonance and methylation linkage analysis showed that WaaPPa could add one phosphate to O4 of HepI in a Salmonella typhimurium waaP mutant. The expression of WaaPPa increased the outer-membrane integrity of these complemented mutants, as evidenced by 35-fold and 75-fold increases in the MIC for novobiocin and SDS respectively. The S. typhimurium waaP mutant transformed with both waaP and wapP had over 250-fold and 1000-fold increases, respectively, in these MICs. The inner core phosphates of P. aeruginosa appear to be playing a key role in the intrinsic drug resistance of this bacterium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Pseudomonas aeruginosa is capable of producing various cell-surface polysaccharides including alginate, A-band and B-band lipopolysaccharides (LPS). The D-mannuronic acid residues of alginate and the D-rhamnose (D-Rha) residues of A-band polysaccharide are both derived from the common sugar nucleotide precursor GDP-D-mannose (D-Man). Three genes, rmd, gmd and wbpW, which encode proteins involved in the synthesis of GDP-D-Rha, have been localized to the 5′ end of the A-band gene cluster. In this study, WbpW was found to be homologous to phosphomannose isomerases (PMIs) and GDP-mannose pyrophosphorylases (GMPs) involved in GDP-D-Man biosynthesis. To confirm the enzymatic activity of WbpW, Escherichia coli PMI and GMP mutants deficient in the K30 capsule were complemented with wbpW, and restoration of K30 capsule production was observed. This indicates that WbpW, like AlgA, is a bifunctional enzyme that possesses both PMI and GMP activities for the synthesis of GDP-D-Man. No gene encoding a phosphomannose mutase (PMM) enzyme could be identified within the A-band gene cluster. This suggests that the PMM activity of AlgC may be essential for synthesis of the precursor pool of GDP-D-Man, which is converted to GDP-D-Rha for A-band synthesis. Gmd, a previously reported A-band enzyme, and Rmd are predicted to perform the two-step conversion of GDP-D-Man to GDP-D-Rha. Chromosomal mutants were generated in both rmd and wbpW. The Rmd mutants do not produce A-band LPS, while the WbpW mutants synthesize very low amounts of A band after 18 h of growth. The latter observation was thought to result from the presence of the functional homologue AlgA, which may compensate for the WbpW deficiency in these mutants. Thus, WbpW AlgA double mutants were constructed. These mutants also produced low levels of A-band LPS. A search of the PAO1 genome sequence identified a second AlgA homologue, designated ORF488, which may be responsible for the synthesis of GDP-D-Man in the absence of WbpW and AlgA. Polymerase chain reaction (PCR) amplification and sequence analysis of this region reveals three open reading frames (ORFs), orf477, orf488 and orf303, arranged as an operon. ORF477 is homologous to initiating enzymes that transfer glucose 1-phosphate onto undecaprenol phosphate (Und-P), while ORF303 is homologous to L-rhamnosyltransferases involved in polysaccharide assembly. Chromosomal mapping using pulsed field gel electrophoresis (PFGE) and Southern hybridization places orf477, orf488 and orf303 between 0.3 and 0.9 min on the 75 min map of PAO1, giving it a map location distinct from that of previously described polysaccharide genes. This region may represent a unique locus within P. aeruginosa responsible for the synthesis of another polysaccharide molecule.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 16 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Previous work from our laboratory has shown that cosmid clone pFVl00, containing a 26 kb insert, is able to restore O-antigen synthesis in serotype O5 rough mutants of Pseudomonas aeruginosa. Mobilization of pFV100 into two P. aeruginosa semi-rough (SR) mutants, AK14O1 and rd7513, resulted in O-antigen expression, indicating that pFV100 may contain an O-polymerase (rfc) gene. pFV.TK6, a subclone of pFVl00 that contains a 5.6 kb chromosomal insert, was able to complement O-antigen expression in these SR mutants. Mutagenesis of pFV.TK6 using Tn1000 exposed a 1.5 kb region that was essential for complementing O-antigen expression in AK14O1. A 2.0 kb Xhol-HindIII fragment, containing this region, was cloned into vector pUCP26 and the resulting plasmid called pFV.TK8. In Southern analysis of the 20 P aeruginosa serotypes using a probe generated from the 1.5 kb Xhol fragment of pFV.TK8, the rfc probe hybridized to a common fragment of the cross-reactive O2-O5-O16-O18-O20 serogroup, suggesting that these serotypes may share a common O-polymerase gene. In functional studies of the rfc gene, the PAOl (serotype O5) chromosomal rfc was mutated using a gene-replacement strategy. These knockout mutants expressed the SR lipopolysaccharide (LPS) phenotype, which indicated that they were no longer producing a functional O-polymerase enzyme. Nucleotide sequence analysis of the insert DNA of pFV.TK8 revealed one open reading frame (ORF), designated ORF48.9, which could code for a 48.9 kDa protein. In comparisons of the P. aeruginosa rfc nucleotide and amino acid sequences with DNA and protein databases, no significant homology was found. However, the deduced structure of the P. aeruginosa Rfc protein indicated that it is very hydrophobic and contains 11 putative membrane-spanning domains. Therefore, the predicted structure is similar to that of other reported Rfc proteins. Furthermore, comparison of the amino acid composition and codon usage of the P. aeruginosa Rfc with other Rfc proteins revealed significant similarity between them.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Pseudomonas aeruginosa A-band lipopolysaccharide (LPS) molecule has an O-polysaccharide region composed of trisaccharide repeat units of α1 → 2, α1 → 3, α1 → 3 linked D-rhamnose (Rha). The A-band polysaccharide is assembled by the α-D-rhamnosyltransferases, WbpX, WbpY and WbpZ. WbpZ probably transfers the first Rha residue onto the A-band accepting molecule, while WbpY and WbpX subsequently transfer two α1 → 3 linked Rha residues and one α1 → 2 linked Rha respectively. The last two transferases are predicted to be processive, alternating in their activities to complete the A-band polymer. The genes coding for these transferases were identified at the 3′ end of the A-band biosynthetic cluster. Two additional genes, psecoA and uvrD, border the 3′ end of the cluster and are predicted to encode a co-enzyme A transferase and a DNA helicase II enzyme respectively. Chromosomal wbpX, wbpY and wbpZ mutants were generated, and Western immunoblot analysis demonstrates that these mutants are unable to synthesize A-band LPS, while B-band synthesis is unaffected. WbpL, a transferase encoded within the B-band biosynthetic cluster, was previously proposed to initiate B-band biosynthesis through the addition of Fuc2NAc (2-acetamido-2,6-dideoxy-D-galactose) to undecaprenol phosphate (Und-P). In this study, chromosomal wbpL mutants were generated that did not express A band or B band, indicating that WbpL initiates the synthesis of both LPS molecules. Cross-complementation experiments using WbpL and its homologue, Escherichia coli WecA, demonstrates that WbpL is bifunctional, initiating B-band synthesis with a Fuc2NAc residue and A-band synthesis with either a GlcNAc (N-acetylglucosamine) or GalNAc (N-acetylgalactosamine) residue. These data indicate that A-band polysaccharide assembly requires four glycosyltransferases, one of which is necessary for initiating both A-band and B-band LPS synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...