ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Wireless networks 3 (1997), S. 471-476 
    ISSN: 1572-8196
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Computer Science
    Notes: Abstract Previous research in our laboratory has shown that various effects of radiofrequency electromagnetic radiation (RFR) exposure on the nervous system are mediated by endogenous opioids in the brain. We have also found that acute exposure to RFR induced DNA strand breaks in brain cells of the rat. The present experiment was carried out to investigate whether endogenous opioids are also involved in RFR‐induced DNA strand breaks. Rats were treated with the opioid antagonist naltrexone (1 mg/kg, IP) immediately before and after exposure to 2450 MHz pulsed (2 µs pulses, 500 pps) RFR at a power density of 2 mW/cm2 (average whole body specific absorption rate of 1.2 W/kg) for 2 hours. DNA double strand breaks were assayed in brain cells at 4 hours after exposure using a microgel electrophoresis assay. Results showed that the RFR exposure significantly increased DNA double strand breaks in brain cells of the rat, and the effect was partially blocked by treatment with naltrexone. Thus, these data indicate that endogenous opioids play a mediating role in RFR‐induced DNA strand breaks in brain cells of the rat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 18 (1997), S. 156-165 
    ISSN: 0197-8462
    Keywords: 60 Hz magnetic fields ; DNA single-strand and double-strand breaks ; brain cells ; microgel electrophoresis ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Acute (2 h) exposure of rats to a 60 Hz magnetic field (flux densities 0.1, 0.25, and 0.5 mT) caused a dose-dependent increase in DNA strand breaks in brain cells of the animals (assayed by a microgel electrophoresis method at 4 h postexposure). An increase in single-strand DNA breaks was observed after exposure to magnetic fields of 0.1, 0.25, and 0.5 mT, whereas an increase in double-strand DNA breaks was observed at 0.25 and 0.5 mT. Because DNA strand breaks may affect cellular functions, lead to carcinogenesis and cell death, and be related to onset of neurodegenerative diseases, our data may have important implications for the possible health effects of exposure to 60 Hz magnetic fields. Bioelectromagnetics 18:156-165, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 19 (1998), S. 117-122 
    ISSN: 0197-8462
    Keywords: 60 Hz ; magnetic field ; water-maze ; spatial learning ; memory ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Rats were trained in six sessions to locate a submerged platform in a circular water-maze. They were exposed to a 1 mT, 60 Hz magnetic field for one hour in a Helmholtz coil system immediately before each training session. In addition, one hour after the last training session, they were tested in a probe trial during which the platform was removed and the time spent in the quadrant of the maze in which the platform was located during the training sessions was scored. Control animals were sham-exposed using the exposure system operating with the coils activated in an anti-parallel direction to cancel the fields. A group of “non-exposed” control animals was also included in the study. There was no significant difference between the magnetic field-exposed and control animals in learning to locate the platform. However, swim speed of the magnetic field-exposed rats was significantly slower than that of the controls. During the probe trial, magnetic field-exposed animals spent significantly less time in the quadrant that contained the platform, and their swim patterns were different from those of the controls. These results indicate that magnetic field exposure causes a deficit in spatial “reference” memory in the rat. Rats subjected to magnetic field exposure probably used a different behavioral strategy in learning the maze. Bioelectromagnetics 19: 117-122, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 6 (1985), S. 73-88 
    ISSN: 0197-8462
    Keywords: SAR ; rat ; head ; tail ; brain sites ; 2,450 MHz ; calorimetry ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Both positive and negative biological effects of microwaves on drug actions in rats exposed to 1-mW/cm2, 2,450-MHz microwaves have been reported by several investigators. We conducted dosimetry studies for seven different exposure conditions to determine whether these different results could be due to the rats having been exposed differently. They included anterior and posterior exposures in a circular waveguide, near field, far field with E-or H-field parallel to the long axis of the body and dorsal exposure in a miniature anechoic chamber with E- or H-field parallel to the long axis of the body. The average specific absorption rates (SARs) in the head, tail, and body of the exposed rats were measured by means of a calorimetry system. The local SARs at eight locations in the brain were determined by temperature measurement with Vitek probes. Intensive coupling of energy to the tail when it was exposed parallel to the E-field was shown by thermography. For the same average incident power density, the average SARs in the heads of rats were about two times higher in the circular waveguide than for other exposures. The local SARs in the brain varied for different exposure conditions. Statistical comparisons of SARs under the different exposure conditions are presented.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 513-526 
    ISSN: 0197-8462
    Keywords: low-level microwaves ; psychoactive drugs ; cholinergic systems ; endogenous opioids ; exposure parameters ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: This paper reviews research on neurological effects of low-level microwave irradiation, which was performed at the University of Washington, during the decade of the 1980s. We studied in the rat the effects of microwave exposure on the actions of various psychoactive drugs, on the activity of cholinergic systems in the brain, and on the neural mechanisms involved. Our results indicate that endogenous opioids play an important mediating role in some of the neurological effects of microwaves, and that parameters of microwave exposure are important determinants of the outcome of the microwave effects. 1992 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 9 (1988), S. 355-362 
    ISSN: 0197-8462
    Keywords: microwaves ; choline uptake ; central nervous system ; radiation parameters ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Sodium-dependent high-affinity choline uptake was measured in the striatum, frontal cortex, hippocampus, and hypothalamus of rats after acute exposure (45 min) to pulsed (2 μs, 500 pps) or continuous-wave 2, 450-MHz microwaves in cylindrical waveguides (Guy et al.: Radio Science 14:63-74, 1979) or miniature anechoic chambers (Guy: Journal of Microwave Power 14:327-338, 1979). In all exposure conditions, the average whole-body specific absorption rate was at 0.6 W/kg. Decrease in choline uptake was observed in the frontal cortex after microwave exposure in all of the above irradiation conditions. Regardless of the exposure system used, hippocampal choline uptake was decreased after exposure to pulsed but not continuous-wave microwaves. Striatal choline uptake was decreased after exposure to either pulsed or continuous-wave microwaves in the miniature anechoic chamber. No significant change in hypothalamic choline uptake was observed under any of the exposure conditions studied. We conclude that depending on the parameters of the radiation, microwaves can elicit specific and generalized biological effects.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 15 (1994), S. 95-104 
    ISSN: 0197-8462
    Keywords: microwaves ; radial-arm maze ; learning ; memory ; cholinergic systems ; endogenous opioids ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: After 45 min of exposure to pulsed 2450 MHz microwaves (2 μsec pulses, 500 pps, 1 mW/cm2, average whole body SAR 0.6 W/kg), rats showed retarded learning while performing in the radial-arm maze to obtain food rewards, indicating a deficit in spatial “working memory” function. This behavioral deficit was reversed by pretreatment before exposure with the cholinergic agonist physostigmine or the opiate antagonist naltrexone, whereas pretreatment with the peripheral opiate antagonist naloxone methiodide showed no reversal of effect. These data indicate that both cholinergic and endogenous opioid neurotransmitter systems in the brain are involved in the microwave-induced spatial memory deficit. © 1994 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 18 (1997), S. 446-454 
    ISSN: 0197-8462
    Keywords: radiofrequency electromagnetic radiation (RER) ; brain cells ; DNA single- and double-strand breaks ; melatonin ; N-tert-butyl-α-phenylnitrone (PNB) ; free radicals ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Effects of in vivo microwave exposure on DNA strand breaks, a form of DNA damage, were investigated in rat brain cells. In previous research, we have found that acute (2 hours) exposure to pulsed (2 μsec pulses, 500 pps) 2450-MHz radiofrequency electromagnetic radiation (RFR) (power density 2 mW/cm2, average whole body specific absorption rate 1.2 W/kg) caused an increase in DNA single- and double-strand breaks in brain cells of the rat when assayed 4 hours post exposure using a microgel electrophoresis assay. In the present study, we found that treatment of rats immediately before and after RFR exposure with either melatonin (1 mg/kg/injection, SC) or the spin-trap compound N-tert-butyl-α-phenylnitrone (PBN) (100 mg/kg/injection, IP) blocks this effect of RFR. Since both melatonin and PBN are efficient free radical scavengers, it is hypothesized that free radicals are involved in RFR-induced DNA damage in the brain cells of rats. Since cumulated DNA strand breaks in brain cells can lead to neurodegenerative diseases and cancer and an excess of free radicals in cells has been suggested to be the cause of various human diseases, data from this study could have important implications for the health effects of RFR exposure. Bioelectromagnetics 18:446-454, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 16 (1995), S. 207-210 
    ISSN: 0197-8462
    Keywords: microwaves ; brain cells ; DNA damage ; rats ; single-strand ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Levels of DNA single-strand break were assayed in brain cells from rats acutely exposed to low-intensity 2450 MHz microwaves using an alkaline microgel electrophoresis method. Immediately after 2 h of exposure to pulsed (2 μs width, 500 pulses/s) microwaves, no significant effect was observed, whereas a dose rate-dependent [0.6 and 1.2 W/kg whole body specific absorption rate (SAR)] increase in DNA single-strand breaks was found in brain cells of rats at 4 h postexposure. Furthermore, in rats exposed for 2 h to continuous-wave 2450 MHz microwaves (SAR 1.2 W/kg), increases in brain cell DNA single-strand breaks were observed immediately as well as at 4 h postexposure. © 1995 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 17 (1996), S. 166-166 
    ISSN: 0197-8462
    Keywords: Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...