ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 1287-1291 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Si0.5Ge0.5/Si multiquantum-well structures are grown using a production-compatible ultrahigh vacuum chemical vapor deposition system. The structures are designed in order to obtain dislocation-free undulating strained layers used as the absorbing layers in photodetector structures. The Si/SiGe/Si stack on a silicon-on-insulator wafer is used as the waveguiding layer. Transmission electron microscopy and photoluminescence are used to characterize the undulating layers. A photoluminescence emission corresponding to the band edge "no phonon" transition is measured at a wavelength beyond 1.55 μm. Preliminary data from metal–semiconductor–metal photodetectors fabricated with this material show a responsivity of approximately 0.1 A/W at the telecommunication wavelength of λ=1.55 μm. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 69 (1996), S. 1444-1446 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: SiGe quantum wells were grown at 525 °C using a commercially available, ultrahigh vacuum–chemical vapor deposition system, in which the purity of the material and quality of interfaces have already been demonstrated. Changes in photoluminescence line energies are monitored and the extent of interdiffusion in the wells during annealing is calculated. A strong initial enhancement of the diffusivity is observed in as-grown material. Material annealed using a two-step process in which strain and Ge peak concentrations are unchanged after the first (low temperature) step, shows a much lower interdiffusion during the second step. It is argued that strain alone cannot explain the enhanced interdiffusion, which is, thus, attributed to grown-in, nonequilibrium point defects. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 2430-2432 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Si0.5Ge0.5/Si multiquantum well structures are grown using a production-compatible ultrahigh vacuum chemical vapor deposition system. The structures are designed in order to obtain dislocation-free undulating strained layers. A photoluminescence emission corresponding to the direct "no phonon" transition is measured at energies systematically smaller than calculated for planar layers, implying that any increase in band gap due to elastic relaxation of the lattice strain at the undulation crests is compensated for by a confinement energy decrease together with a Ge accumulation at the undulation crests. The photoluminescence "no phonon" emission peaks at a wavelength that increases with nominal well thickness up to 1.55 μm. This opens the possibility of using dislocation-free silicon–germanium undulating layers as an absorber for photodetector applications at the telecommunication wavelengths of λ=1.3–1.55 μm. © 1998 American Institute of Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 69 (1996), S. 993-995 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A demonstration of quantum well intermixing using ion implantation in Si1−xGex/Si strained-layer heterostructures is presented. The quantum-well related photoluminescence lines of implanted and annealed samples are blue shifted by up to 40 meV relative to those measured in annealed-only samples. Optical and structural qualities of the heterostructure remain high after implantation and annealing treatments. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 69 (1996), S. 3866-3868 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Using photoluminescence we have studied the effect of a low temperature "preanneal'' stage on the intermixing of 3 nm Si0.7Ge0.3/Si quantum wells, implanted with silicon ions having energies up to 1 MeV and then exposed to rapid thermal annealing at 850 °C for 300 s. We find that an unwanted quantum well band gap increase in unimplanted samples after rapid thermal annealing can be reduced substantially from ∼30 to ∼5 meV due to the removal of grown-in defects by preannealing at 630 °C for 24 h. Preannealed samples that were implanted and rapid thermal annealed showed at least the same band gap increase (up to 70 meV in these samples) observed for nonpreannealed samples. These results are understood in terms of significantly different activation energies for defect diffusion and quantum well intermixing and a nonlinear dependence of the energy shifts on defect concentrations. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0167-9317
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Electrical Engineering, Measurement and Control Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Microelectronic Engineering 11 (1990), S. 313-316 
    ISSN: 0167-9317
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Electrical Engineering, Measurement and Control Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Agroforestry systems 49 (2000), S. 131-152 
    ISSN: 1572-9680
    Keywords: belowground competition ; Digitaria decumbens ; Gliricidia sepium ; root distribution ; two-dimensional soil-root water transport model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A two-dimensional physically-based model for the daily simulation of root competition for water in an alley cropping system associating Gliricidia sepium with Digitaria decumbens is developed. This paper deals with the impact of root distribution on soil water partitioning. By adapting existing principles of root water uptake modelling for pure crops, the model accounts simultaneously for the sink terms of each species in a defined soil domain. Soil-root water transport functions are solved at the level of discrete volumes of soil; each of them are characterized by the inherent soil physical properties, root length density, soil-root distances, and the calculated sink terms of each species. The above ground boundary conditions, such as transpiration and soil evaporation, were managed by simple equations found from the literature or provided by experimental measurements. Running the model with two contrasting observed root maps, an evaluation was carried out over a 10-day period following a rainfall event. With both root maps, the simulated soil water potential profiles at the row, at 0.75 m and 1.50 m from the row did not differ significantly, and were in good agreement with the measurements. However, although water was not limiting during this period, the simulated cumulative water absorption profiles of G. sepium and D. decumbens contrasted markedly, and matched their observed root distribution. This model, although still under further development, forms the basis for development of an above and below ground coupled model to simulate plant interactions for water in intercrops or agroforestry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Liverpool : Periodicals Archive Online (PAO)
    The Town planning review. 9:1 (1921:Mar.) 1 
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5036
    Keywords: intercrops ; roots ; water uptake ; soil-root water potential ; model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A knowledge of above and below ground plant interactions for water is essential to understand the performance of intercropped systems. In this work, root water potential dynamics and water uptake partitioning were compared between single crops and intercrops, using a simulation model. Four root maps having 498, 364, 431 and 431 soil-root contacts were used. In the first and second cases, single crops with ‘deep’ and ‘surface’ roots were considered, whereas in the third and fourth cases, roots of two mixed crops were simultaneously considered with different row spacing (40 cm and 60 cm). Two soils corresponding to a clay and a silty clay loam were used in the calculations. A total maximum evapotranspiration of 6 mm d-1 for both single or mixed crops was considered, for the mixed crops however, two transpiration distributions between the crops were analyzed (3:3 mm d-1, or 4:2 mm d-1 for each crop, respectively). The model was based on a previous theoretical framework applied to single or intercropped plants having spatially distributed roots in a two-dimensional domain. Although water stress occurred more rapidly in the loam than in the clay, due to the rapid decrease of the soil water reserve in the loam, the role of the root arrangement appeared to be crucial for water availability. Interactions between the distribution of transpiration among mixed crops and the architecture of the root systems which were in competition led to water movements from zones with one plant to another, or vice versa, which corresponded to specific competition or facilitation effects. Decreasing the distances between roots may increase competition for water, although it may determine greater water potential gradients in the soil that increase lateral or vertical water fluxes in the soil profile. The effects of the root competition on water uptake were quite complicated, depending on both environmental conditions, soil hydrodynamic properties, and time scales. Although some biological adaptive mechanisms were disregarded in the analysis, the physically 2-D based model may be considered as a tool to study the exploitation of environmental heterogeneity at microsite scales.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...