ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0789
    Keywords: Azospirillum lipoferum inoculation ; Rice yield ; Acetylene reduction assay ; 15N feeding and dilution techniques
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A spontaneous mutant ofAzospirillum lipoferum, resistant to streptomycin and rifampicin, was inoculated into the soil immediately before and 10 days after transplanting of rice (Oryza sativa L.). Two rice varieties with high and low nitrogen-fixing supporting traits, Hua-chou-chi-mo-mor (Hua) and OS4, were used for the plant bacterial interaction study. The effect of inoculation on growth and grain and dry matter yields was evaluated in relation to nitrogen fixation, by in situ acetylene reduction assay,15N2 feeding and15N dilution techniques. A survey of the population of marker bacteria at maximum tillering, booting and heading revealed poor effectivety. The population of nativeAzospirillum followed no definite pattern. Acetylene-reducing activity (ARA) did not differ due to inoculation at two early stages but decreased in the inoculated plants at heading. In contrast, inoculation increased tiller number, plant height of Hua and early reproductive growth of both varieties. Grain yield of both varieties significantly increased along with the dry matter. Total N also increased in inoculated plants, which was less compared with dry matter increase.15N2 feeding of OS4 at heading showed more15N2 incorporation in the control than in the inoculated plants. The ARA,15N and N balance studies did not provide clear evidence that the promotion of growth and nitrogen uptake was due to higher N2 fixation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Sesbania rostrata ; Green manure ; Stem nodulation ; N2 fixation ; Azorhizobium caulinodans ; Inoculation ; Rice ; Yield ; N balance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Root and stem nodulation, nitrogen fixation (acetylene-reducing activity), growth and N accumulation bySesbania rostrata as affected by season and inoculation were studied in a pot experiment. The effects ofS. rostrata as a green manure on succeeding wet-season and dry-season rice yields and total N balance were also studied.S. rostrata grown during the wet season showed better growth, nodulation, and greater acetylene-reducing activity than that grown during the dry season. Inoculation withAzorhizobium caulinodans ORS 571 StrSpc® (resistant to streptomycin and spectinomycin) on the stem alone or on both root and stem significantly increased N2 fixation by the plants. Soil and seed inoculation yielded active root nodules under flooded conditions. Plants that were not inoculated on the stem did not develop stem nodules. The nitrogenase activity of the root nodules was greater than that of the stem nodules in about 50-day-oldS. rostrata. S. rostrata incorporation, irrespective of inoculation, significantly increased the grain yield and N uptake of the succeeding wet season and dry season rice crops. The inoculated treatments produced a significantly greater N gain (873 mg N pot−1) than the noinoculation (712 mg N pot−1) treatment. About 80% of the N gained was transferred to the succeeding rice crops and about 20% remained in the soil. The soil N in the flooded fallow-rice treatment significantly declined (−140 mg N pot−1) but significantly increased in bothS. rostrata-rice treatments (159 and 151 mg N pot−1 in uninoculated and inoculated treatments respectively). The N-balance data gave extrapolated values of N2 fixed per hectare at about 303 kg N ha−1 per two crops forS. rostrata (uninoculated)-rice and 383 forS. rostrata (inoculated)-rice.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Wetland rice soils ; Nitrogen fixation ; Sesbania rostrata ; PK fertilization ; Soil Mn ; Acetylene reduction assay ; ARA ; Green manure ; N dilution method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The performance of Sesbania rostrata varies widely from site to site. This makes it difficult to predict the N yield and biomass of this plant in marginally productive soils, and to arouse the interest of farmers in green manure technology. Three consecutive pot experiments were conducted in a greenhouse at the International Rice Research Institute (IRRI) to evaluate growth, nodulation, N2 fixation (C2H2 reduction assay and 15N dilution method), and N yield of 6-week-old S. rostrata on 13 physicochemically different wetland rice soils of the Philippines and on three artificial substrates. The performance of S. rostrata on the unfertilized controls was compared with two fertilizer treatments containing either P (100 mg P kg-1 dry soil) or P+K (100 mg P kg-1 and 200 mg K kg-1 dry soil). In the control soils and substrates, the N yield of S. rostrata varied between 20 and 470 mg N per pot, with the N rate from N2 fixation ranging between 0 and 95%. In three of the nutritionally poor soils even Mn toxicity symptoms apparently occurred with S. rostrata. P application alleviated these symptoms and increased the overall N yield considerably, mainly through increased biological N2 fixation. An additional increase in N yield was obtained by the PK treatment. Multiple regression analysis between soil characteristics and the N yield of S. rostrata showed that the original level of P (Olsen-extracted) and Mn in the soil accounted for 73% of the variance in biomass production by S. rostrata among the unfertilized soils and substrates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0789
    Keywords: Nitrogen fixation (C2H2 reduction) ; Aerobic and N2-fixing heterotrophs ; Photosynthetic purple nonsulphur bacteria ; Straw ; Wetland rice soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of incorporation and surface application of straw to a wetland rice field on nitrogen fixation (C2H2 reduction), bacterial population and rice plant growth were studied. Rice straw (5 t ha−1) was chopped (10- to 15-cm pieces) and applied to the field 2 weeks before transplanting IR42, a long-duration variety, and IR50, a short-duration variety. The acetylene-reducing activity (ARA) of IR42 and IR50 measured at heading stage for 3 consecutive days showed significantly higher ARA in IR42 as a result of the 2 straw application methods. Mostly up to 20 days after straw surface application and incorporation, the dark ARA in the soil, total and N2-fixing heterotrophs, and photoorganotrophic purple nonsulphur bacteria (POPNS) in the soil and in association with degrading straw were stimulated. Higher bacterial populations were associated with straw on the surface than with straw incorporated. The POPNS counts, in particular, were increased hundreds fold in the surface-applied straw treatment. Straw applications also increased the root, shoot and total plant biomass at heading stage and the total dry matter yield at harvest in both varieties. The data show the potentials of straw as a source of substrate for the production of microbial biomass and for the non-symbiotic N2 fixation to improve soil fertility and plant nutrition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 4 (1987), S. 3-7 
    ISSN: 1432-0789
    Keywords: Azospirillum lipoferum ; Mucigel ; Oryza sativa ; Root colonization ; Scanning electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Seedlings of rice (IR42 and IR50) were aseptically dipped into Azospirillum lipoferum strain 34H suspension under dark, and the presence of bacteria on the differentiating regions of rice roots was observed by scanning electron microscopy. The bacterium did not colonize the root tips of IR42, while it colonized this region in the case of IR50, within 24 h after inoculation. In the early stages, most of the bacteria were embedded in the ruptured mucigel below the root cap cells of IR42. Mucigel was hardly detectable in IR50. While the root hair primordia of IR50 were colonized heavily with the bacterium within 24 h, the root hairs of IR42 were colonized 48 and 72 h after inoculation. This phenomenon in relation to plant varietal differences was discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 243-248 
    ISSN: 1432-0789
    Keywords: Key words Adverse soil conditons ; Aeschynomene ; Green manure ; Lowland rice ; Nitrogen fixation ; Sesbania ; Forming system development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Poor adoption of sustainable pre-rice green manure technology by lowland farmers is frequently associated with unreliable legume performance under adverse environmental conditions such as marginal soils, short photoperiod, and unfavorable hydrology. A series of field and microplot experiments were conducted at the International Rice Research Institute (IRRI) in 1991 and 1992 to screen and evaluate 12 promising flood-tolerant legumes for adaptation (N accumulation and biological N2 fixation) to a range of environmental stresses, frequently encountered in rice lowlands. Legumes belonging to the genera Sesbania and Aeschynomene were grown for 8 weeks at 10×10 cm spacing: (1) in a fertile control soil and in four marginally productive irrigated lowland rice soils (sandy Entisol, P-deficient Inceptisol, acid Ultisol, and saline Mollisol); (2) during short- (11.7 h) and long-day (12.3 h) seasons in a favorable irrigated lowland soil; and (3) in an aerobic soil (drought-prone rain-fed lowland) and a deep-flood-prone lowland soil (1 week seedling submergence). A large variability in N accumulation was observed among legume species and across different environments, ranging from less than 1 to over 70 mg N plant–1. The nitrogen derived from the atmosphere (Ndfa) accounted on average for 82% of total N accumulation. Sesbania virgata was least affected by unfavorable soil conditions but its Ndfa was the lowest among the tested species (less than 60%). Stem nodule formation did not convey a significant advantage to legumes grown under adverse soil conditions. However, flooding reduced N2 fixation less in stem-nodulating than in solely root-nodulating species. Most species drastically reduced N accumulation under short-day conditions. Aeschynomene afraspera and S. speciosa were least affected by photoperiod. The considerable genetic variability in the germplasm screened allows the selection of potentially appropriate legumes to most conditions studied, thus increasing N accumulation in green manures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 243-248 
    ISSN: 1432-0789
    Keywords: Adverse soil conditons ; Aeschynomene ; Green manure ; Lowland rice ; Nitrogen fixation ; Sesbania ; Forming system development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Poor adoption of sustainable pre-rice green manure technology by lowland farmers is frequently associated with unreliable legume performance under adverse environmental conditions such as marginal soils, short photoperiod, and unfavorable hydrology. A series of field and microplot experiments were conducted at the International Rice Research Institute (IRRI) in 1991 and 1992 to screen and evaluate 12 promising flood-tolerant legumes for adaptation (N accumulation and biological N2 fixation) to a range of environmental stresses, frequently encountered in rice lowlands. Legumes belonging to the genera Sesbania and Aeschynomene were grown for 8 weeks at 10×10 cm spacing: (1) in a fertile control soil and in four marginally productive irrigated lowland rice soils (sandy Entisol, P-deficient Inceptisol, acid Ultisol, and saline Mollisol); (2) during short- (11.7h) and long-day (12.3 h) seasons in a favorable irrigated lowland soil; and (3) in an aerobic soil (drought-prone rain-fed lowland) and a deep-flood-prone lowland soil (1 week seedling submergence). A large variability in N accumulation was obsersed among legume species and across different environments, ranging from less than 1 to over 70 mg N plant-1. The nitrogen derived from the atmosphere (Ndfa) accounted on average for 82% of total N accumulation. Sesbania virgata was least affected by unfavorable soil conditions but its Ndfa was the lowest among the tested species (less than 60%). Stem nodule formation did not convey a significant advantage to legumes grown under adverse soil conditions. However, flooding reduced N2 fixation less in stem-nodulating than in solely root-nodulating species. Most species drastically reduced N accumulation under short-day conditions. Aeschynomene afraspera and S. speciosa were least affected by photoperiod. The considerable genetic variability in the germplasm screened allows the selection of potentially appropriate legumes to most conditions studied, thus increasing N accumulation in green manures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 6 (1988), S. 279-281 
    ISSN: 1432-0789
    Keywords: Sesbania rostrata ; Green manure ; Biofertilizer ; Nitrogen fixation ; Stem nodule
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Ratooning and stem cutting were compared with seeding in order to reduce the amount of seeds of Sesbania rostrata for green-manure growth. Both methods increased the biofertilizer yield highly significantly within a 6-week growth period.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0789
    Keywords: Sesbania rostrata ; Sesbania cannabina (syn. Sesbania aculeata) ; Non-N2-fixing reference ; Biological N2 fixation ; 15N dilution ; 15N atom % excess
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A field experiment in concrete-based plots was conducted to estimate the contribution of N derived from air (Ndfa) or biological N2 fixation in Sesbania rostrata and S. cannabina (syn. S. aculeata), using various references, by the 15N dilution method. The two Sesbania species as N2-fixing reference plants and four aquatic weed species as non-N2-fixing references were grown for 65 days after sowing in two consecutive crops, in the dry and the wet seasons, under flooded conditions. Soil previously labeled with 15N at 0.26 atom % 15N excess in mineralizable N was further labeled by ammonium sulfate with 3 and 6 atom % 15N excess. The results showed that 15N enrichment of soil NH 4 + -N dropped exponentially in the first crop to half the original level in 50 days while in the second crop, it declined gradually to half the level in 130 days. The decline in 15N enrichment, in both N2-fixing and non-fixing species, was also steeper in the first crop than in the second crop. Variations in 15N enrichment among non-fixing species were smaller in the second crop. The ratio of the uptake of soil N to that of fertilizer N in N2-fixing and non-fixing species was estimated by the technique of varying the 15N level. In the second crop, this ratio in non-fixing species was higher than that in N2-fixing species. Comparable estimates of % Ndfa were obtained by using 15N enrichment of various non-fixing species. There was also good agreement between the estimates obtained by using 15N enrichment of non-fixing species and those by using soil NH 4 + -N, particularly in the second crop. By 25 days after sowing, the first crop of both Sesbania spp. had obtained 50% of total N from the atmosphere and the second crop had obtained 75%. The contribution from air increased with the age of the plant and ranged from 70% to 95% in 45–55 days. S. rostrata fixed substantially higher amounts of N2 due to its higher biomass production compared with S. cannabina. Mathematical considerations in applying the 15N dilution method are discussed with reference to these results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 13 (1992), S. 74-78 
    ISSN: 1432-0789
    Keywords: Sesbania rostrata ; Echinochloa crus-galli ; 15N atom% excess ; Soil NH inf4 sup+ -N ; 15N dilution ; Biological N2 fixation ; Fertilizer use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A pot experiment in the greenhouse was conducted to compare the contribution of N derived from the atmosphere or from biological N2 fixation by Sesbania rostrata inoculated with Azorhizobium caulinodans, applied either to roots or to roots and stems (single or multiple stem inoculation). Two subsequent crops were grown for 50 days under flooded conditions. N derived from air was estimated by 15N dilution using 15N enrichment of soil NH inf4 sup+ -N and of Echinochloa crusgalli as the non-N2-fixing reference datum and compared with estimates obtained by the N-difference method. The first crop was grown to stabilize the 15N into the soil organic N fraction. The 15N enrichment of soil NH inf4 sup+ -N in the second crop declined slowly. The extractability ratio (15N enrichment of extractable soil N to 15N enrichment of total soil N) decreased from 4.8 to 4.1 50 days after planting. The enrichment of soil NH inf4 sup+ -N was comparable to that of E. crus-galli, resulting in similar estimates of N derived from air when either soil NH inf4 sup+ -N or enrichment of E. crus-galli was used as a non-fixing reference. The N-difference method did not always provide reliable estimates of N derived from air; percentages ranged from 75 to more than 80 by 50 days after planting in both crops and did not differ among treatments. The study demonstrates the potential of using 15N enrichment of soil NH inf4 sup+ -N as a non-N2-fixing reference for reliable BNF estimates of crops in lowland puddled soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...