ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-04-02
    Description: Global climate change is a major threat to biodiversity. Large-scale analyses have generally focused on the impacts of climate change on the geographic ranges of species and on phenology, the timing of ecological phenomena. We used long-term monitoring of the abundance of breeding birds across Europe and the United States to produce, for both regions, composite population indices for two groups of species: those for which climate suitability has been either improving or declining since 1980. The ratio of these composite indices, the climate impact indicator (CII), reflects the divergent fates of species favored or disadvantaged by climate change. The trend in CII is positive and similar in the two regions. On both continents, interspecific and spatial variation in population abundance trends are well predicted by climate suitability trends.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, Philip A -- Mason, Lucy R -- Green, Rhys E -- Gregory, Richard D -- Sauer, John R -- Alison, Jamie -- Aunins, Ainars -- Brotons, Lluis -- Butchart, Stuart H M -- Campedelli, Tommaso -- Chodkiewicz, Tomasz -- Chylarecki, Przemyslaw -- Crowe, Olivia -- Elts, Jaanus -- Escandell, Virginia -- Foppen, Ruud P B -- Heldbjerg, Henning -- Herrando, Sergi -- Husby, Magne -- Jiguet, Frederic -- Lehikoinen, Aleksi -- Lindstrom, Ake -- Noble, David G -- Paquet, Jean-Yves -- Reif, Jiri -- Sattler, Thomas -- Szep, Tibor -- Teufelbauer, Norbert -- Trautmann, Sven -- van Strien, Arco J -- van Turnhout, Chris A M -- Vorisek, Petr -- Willis, Stephen G -- New York, N.Y. -- Science. 2016 Apr 1;352(6281):84-7. doi: 10.1126/science.aac4858.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Conservation Ecology Group, School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK. ; Royal Society for the Protection of Birds, Centre for Conservation Science, The Lodge, Sandy, Bedfordshire SG19 2DL, UK. ; Royal Society for the Protection of Birds, Centre for Conservation Science, The Lodge, Sandy, Bedfordshire SG19 2DL, UK. Conservation Science Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. ; United States Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD 20708, USA. ; Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK. ; Faculty of Biology, University of Latvia, Jelgavas iela 1, Riga, LV-1004, Latvia. ; Center for Mediterranean Forest Research, Centre Tecnologic Forestal de Catalunya, InForest JRU, Solsona 25280, Spain. REAF, Cerdanyola del Valles 08193, Catalonia, Spain. CSIC, Cerdanyola del Valles 08193, Catalonia, Spain. ; Conservation Science Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. BirdLife International, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK. ; MITO2000 National Committee; c/o Dream Italia, Via Garibaldi 3, 52015, Pratovecchio-Stia, Arezzo, Italy. ; Ogolnopolskie Towarzystwo Ochrony Ptakow, Odrowaza 24,05-270 Marki, Poland. ; Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland. ; BirdWatch Ireland, Unit 20 Block D Bullford Business Campus, Kilcoole, County Wicklow, Ireland. ; Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise Street 46, 51014 Tartu, Estonia. Estonian Ornithological Society, Veski 4, 51005 Tartu, Estonia. ; Sociedad Espanola de Ornitologia/BirdLife Melquiades Biencinto, 34, 28053 Madrid. Spain. ; European Bird Census Council, Post Office Box 6521, 6503 GA Nijmegen, Netherlands. Sovon Dutch Centre for Field Ornithology, Post Office Box 6521, 6503 GA Nijmegen, Netherlands. Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Radboud University, Post Office Box 9010, 6500 GL Nijmegen, Netherlands. ; Dansk Ornitologisk Forening-BirdLife Denmark and University of Aarhus, Vesterbrogade 140, 1620 Kobenhavn V, Denmark. ; European Bird Census Council-Catalan Ornithological Institute, Natural History Museum of Barcelona, Placa Leonardo da Vinci 4-5, 08019 Barcelona, Catalonia, Spain. ; Section for Science, Nord University, 7600 Levanger, Norway. ; UMR7204 Sorbonne Universites-MNHN-CNRS-UPMC, CESCO, CRBPO, CP 135, 43 Rue Buffon, 75005 Paris, France. ; The Helsinki Lab of Ornithology, Finnish Museum of Natural History, Post Office Box 17, 00014 University of Helsinki, Finland. ; Biodiversity Unit, Department of Biology, Lund University, Ecology Building, S-223 62 Lund, Sweden. ; The British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, UK. ; Natagora, Departement Etudes, Rue Nanon 98, B-5000 Namur, Belgium. ; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Czech Republic. Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacky University Olomouc, 17 Listopadu 50, 771 43 Olomouc, Czech Republic. ; Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland. ; Institute of Environmental Sciences, University of Nyiregyhaza, Sostoi ut 31/b, 4400 Nyiregyhaza, Hungary. ; BirdLife Austria, Museumsplatz 1/10/8, A-1070 Vienna, Austria. ; Dachverband Deutscher Avifaunisten e.V. (Federation of German Avifaunists), An den Speichern 6, D-48157 Munster, Germany. ; Statistics Netherlands, Post Office Box 24500, 2490 HA The Hague, Netherlands. ; Sovon Dutch Centre for Field Ornithology, Post Office Box 6521, 6503 GA Nijmegen, Netherlands. Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Radboud University, Post Office Box 9010, 6500 GL Nijmegen, Netherlands. ; Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacky University Olomouc, 17 Listopadu 50, 771 43 Olomouc, Czech Republic. Pan-European Common Bird Monitoring Scheme, Czech Society for Ornithology, Na Belidle 252/34, CZ-15000 Prague 5, Czech Republic.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27034371" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Migration ; Animals ; Biodiversity ; *Birds ; Breeding ; *Climate Change ; Ecological Parameter Monitoring ; Europe ; Population Dynamics ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of radioanalytical and nuclear chemistry 235 (1998), S. 71-75 
    ISSN: 1588-2780
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Anthropogenic radioactivity is being measured in near-real time by an international monitoring system designed to verify the Comprehensive Nuclear Test Ban Treaty. Airborne radioactivity measurements are conducted in-situ by stations that are linked to a central data processing and analysis facility. Aerosols are separated by high-volume air sampling with high-efficiency particulate filters. Radio-xenon is separated from other gases through cryogenic methods. Gamma-spectrometry is performed by high purity germanium detectors and the raw spectral data is immediately transmitted to the central facility via Internet, satellite, or modem. These highly sensitive sensors, combined with the automated data processing at the central facility, result in a system capable of measuring environmental radioactivity on the microbeequerel scale where the data is available to scientists within minutes of the field measurement. During the past year, anthropogenic radioactivity has been measured at approximately half of the stations in the current network. Sources of these measured radionuclides include nuclear power plant emissions, Chernobyl resuspension, and isotope production facilities. The ability to thoroughly characterize site-specific radionuclides, which contribute to the radioactivity of the ambient environment, will be necessary to reduce the number of false positive events. This is especially true of anthropogenic radionuclides that could lead to ambiguous analysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of radioanalytical and nuclear chemistry 235 (1998), S. 65-69 
    ISSN: 1588-2780
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A global radionuclide monitoring system is being engineered as part of a multi-technology verification system for the Comprehensive Nuclear Test Ban Treaty. The system detects airborne radioactive aerosols and gases that can indicate nuclear weapons test debris. The backbone of the system is a network of 80 remote detection stations that utilize high-volume air sampling and high-resolution gamma spectrometry to provide in-situ assay and near-real time reporting. These stations are linked to the International Data Centre, which is a central data processing hub where raw spectral data is automatically processed, analyzed, and disseminated to the states parties. Measurements are categorized based on spectral content to determine which contain anomalous anthropogenic radionuclides that require intensive radiochemical analysis at a certified laboratory. The resulting system has the capability to measure microbecquerel concentrations of radionuclides and provide accessible data products within minutes of field measurements. During the past year of international operations, the minimum detectable concentrations and spectroscopy processing statistics were recorded as a function of geographical location and time. The results show that this system is an effective tool for nuclear test monitoring, as well as other applications such as radiological emergency response, public health monitoring, and scientific research.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 50 (1993), S. 1493-1500 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Oxidation induction time (OIT), as measured by differential scanning calorimetry, is useful in assessing the extent of degradation in polymeric materials. Values of OIT for typical EPR and XLPE polymer insulation materials used for electric cable insulation in nuclear power plants were measured as a function of both radiation dose and antioxidant concentration after accelerated aging. Irradiations were performed at the University of Virginia Cobalt Irradiation Facility. OIT was found to decrease exponentially with increasing radiation dose and with decreasing antioxidant concentration for both ethylene-propylene rubber (EPR) and cross-linked polyethylene (XLPE) insulations. It was determined experimentally that, when polymers are subjected to a constant radiation dose rate, antioxidant concentration decreases linearly with time, and it was shown that this variation is consistent with theoretical autoxidation kinetics. © 1993 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1943-03-15
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1943-03-15
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-09-01
    Print ISSN: 0236-5731
    Electronic ISSN: 1588-2780
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-09-01
    Print ISSN: 0236-5731
    Electronic ISSN: 1588-2780
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-31
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...