ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-01-14
    Description: SUMMARY We present a new database of surface wave group and phase-velocity dispersion curves derived from seismic ambient noise, cross-correlating continuous seismic recordings from the Swiss Network, the German Regional Seismological Network (GRSN), the Italian national broad-band network operated by the Istituto Nazionale di Geosica e Vulcanologia (INGV). To increase the aperture of the station array, additional measurements from the Mediterranean Very Broad-band Seismographic Network (MedNet), the Austrian Central Institute for Meteorology and Geodynamics (ZAMG), the French, Bulgarian, Hungarian, Romanian and Greek stations obtained through Orfeus are also included. The ambient noise, we are using to assemble our database, was recorded at the above-mentioned stations between 2006 January and 2006 December. Correlating continuous signal recorded at pairs of stations, allows to extract coherent surface wave signal travelling between the two stations. Usually the ambient-noise cross-correlation technique allows to have informations at periods of 30 s or shorter. By expanding the database of noise correlations, we seek to increase the resolution of the central Europe crustal model. We invert the resulting data sets of group and phase velocities associated with 8–35 s Rayleigh waves, to determine 2-D group and phase-velocity maps of the European region. Inversions are conducted by means of a 2-D linearized tomographic inversion algorithm. The generally good agreement of our models with previous studies and good correlation of well-resolved velocity anomalies with geological features, such as sedimentary basins, crustal roots and mountain ranges, documents the effectiveness of our approach.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Geophys. Res. Lett., Leipzig, Birkhäuser Verlag, vol. 24, no. 22, pp. 2849-2852, pp. 2458, (ISBN: 0-12-018847-3)
    Publication Date: 1997
    Keywords: 7299 ; Seismology ; General ; or ; miscellaneous ; Crustal deformation (cf. Earthquake precursor: deformation or strain) ; Inelastic ; Earthquake ; Modelling ; GRL
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  J. Geophys. Res., Leipzig, Birkhäuser Verlag, vol. 104, no. B11, pp. 25,567-25,594, pp. 2458, (ISBN: 0-12-018847-3)
    Publication Date: 1999
    Keywords: Seismology ; Tomography ; Rayleigh waves ; P-waves ; 7207 ; Seismology ; Core ; and ; mantle ; 7218 ; Lithosphere ; and ; upper ; mantle ; 3260 ; Mathematical ; geophysics ; (new ; field) ; Inverse ; theory ; 8121 ; JGR ; Tectonophysics ; Dynamics, ; convection ; currents ; and ; mantle ; plumes ; Dziewonski
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  J. Geophys. Res., Leipzig, Birkhäuser Verlag, vol. 105, no. B1, pp. 631-652, pp. 2458, (ISBN: 0-12-018847-3)
    Publication Date: 2000
    Keywords: Elasticity ; Dislocation ; sphere ; Inelastic ; Rheology ; Subduction zone ; 3210 ; Mathematical ; geophysics ; (new ; field) ; Modeling ; 7209 ; Seismology ; Earthquake ; dynamics ; and ; mechanics ; 8162 ; Tectonophysics ; Rheology--mantle ; JGR
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Eos Trans. AGU, Roma, Polish Geothermal Association, vol. 85, no. 6, pp. 62 & 64, pp. B09303, (ISSN: 1340-4202)
    Publication Date: 2004
    Keywords: Crustal deformation (cf. Earthquake precursor: deformation or strain) ; Rheology ; Modelling ; Geodesy ; 1699 ; Global ; Change: ; General ; or ; miscellaneous ; 9350 ; North ; America
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Abstract Temperature distribution at depth is of key importance for characterizing the crust, defining its mechanical behavior and deformation. Temperature can be retrieved by heat flow measurements in boreholes that are sparse, shallow, and have limited reliability, especially in active and recently active areas. Laboratory data and thermodynamic modeling demonstrate that temperature exerts a strong control on the seismic properties of rocks, supporting the hypothesis that seismic data can be used to constrain the crustal thermal structure. We use Rayleigh wave dispersion curves and receiver functions, jointly inverted with a transdimensional Monte Carlo Markov Chain algorithm, to retrieve the VS and VP/VS within the crust in the Italian peninsula. The high values (〉1.9) of VP/VS suggest the presence of filled‐fluid cracks in the middle and lower crust. Intracrustal discontinuities associated with large values of VP/VS are interpreted as the α−β quartz transition and used to estimate geothermal gradients. These are in agreement with the temperatures inferred from shear wave velocities and exhibit a behavior consistent with the known tectonic and geodynamic setting of the Italian peninsula. We argue that such methods, based on seismological observables, provide a viable alternative to heat flow measurements for inferring crustal thermal structure.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-06-29
    Description: Inverted models of the deep mantle show a decorrelation between maps of shear VS and compressional VP wave velocities, an anti-correlation between the bulk sound velocity V$\phi$ and VS and a much larger variability of VS with respect to VP, expressed by large values of the ratio of their relative lateral variations. We carried out synthetic tests to verify if these features could be artifacts, explained by limits in tomographic resolution: synthetic data are calculated for an “input” model, and linearly inverted, as in tomography, to find an “output” model. Comparing the values of the aforementioned parameters for two different chemically homogeneous input models with the associated reconstructed output ones, we found that artifacts caused by realistic data noise and the nonuniform distribution of seismic sources and stations over the globe are not sufficient to introduce the features previously described. We confirm that compositional effects are required to explain them.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-12-09
    Description: We derive the 3D crustal structure (S wave velocity) underneath Italy and the Alpine region, expanding and exploiting the database of ambient noise Rayleigh-wave phase- and group-velocity of verbeke et al . [2012]. We first complement the database of verbeke et al . [2012] with a dense set of new ambient-noise-based phase-velocity observations. We next conduct a suite of linear least squares inversion of both phase- and group-velocity data, resulting in 2D maps of Rayleigh-wave phase and group velocity at periods between 5 and 37 s. At relatively short periods, these maps clearly reflect the surface geology of the region, e.g. low velocity zones at the Po Plain; at longer periods, deeper structures such as Moho topography under Alps and Apennines, and lower-crust anomalies are revealed. Our phase- and group-velocity models are next inverted via the Neighbourhood Algorithm to determine a set of one-dimensional shear-velocity models (one per phase/group-velocity pixel), resulting in a new three-dimensional model of shear velocity ( υ S ) parameterized in the same way as the European reference crustal model EPcrust [ Molinari and Morelli, 2011]. We also show how well υ S is constrained by phase and group dispersion curves. The model shows the low velocity area beneath the Po Plain and the Molasse basin; the contrast between the low-velocity crust of the Adriatic domain and the high-velocity crust of the Tyrrhenian domain is clearly seen, as well as an almost uniform crystalline crust beneath the Alpine belt. Our results are discussed from the geological/geodynamical standpoint, and compared to those of other, interdisciplinary studies. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-10-25
    Description: The vertical coherence of mantle structure is of importance for a range of dynamic issues including convective mass transport and the geochemical evolution of Earth. Here, we use seismic data to infer the most likely depth ranges of strong, global changes in the horizontal pattern of mantle heterogeneity. We apply our algorithm to a comprehensive set of measurements, including various shear- and compressional-wave delay times and Love- and Rayleigh-wave fundamental mode and overtone dispersion, so that tomography resolution is as high as possible at all mantle depths. We find that vertical coherence is minimum at ∼100 km and ∼800 km depths, corresponding to the base of the lithosphere and the transition between upper and lower mantle, respectively. The D″ layer is visible, but not as prominent as the shallower features. The rest of the lower mantle is, essentially, vertically coherent. These findings are consistent with slab stagnation at depths around, and perhaps below, the 660-km phase transition, and inconsistent with global, chemically distinct, mid-mantle layering.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-01-05
    Description: We have inverted global fundamental mode and higher-order Love and Rayleigh wave dispersion data jointly, to find global maps of temperature, composition, and radial seismic anisotropy of the Earth's mantle as well as their uncertainties via a stochastic sampling-based approach. We apply a self-consistent thermodynamic method to systematically compute phase equilibria and physical properties (P and S wave velocity, density) that depend only on composition (in the Na2-CaO-FeO-MgO-Al2O3-SiO2 model system), pressure, and temperature. Our 3-D maps are defined horizontally by 27 different tectonic regions and vertically by a number of layers. We find thermochemical differences between oceans and continents to extend down to ∼250 km depth, with continents and cratons appearing chemically depleted (high magnesium number (Mg #) and Mg/Si ratio) and colder (〉100°C) relative to oceans, while young oceanic lithosphere is hotter than its intermediate age and old counterparts. We find what appears to be strong radial S wave anisotropy in the upper mantle down to ∼200 km, while there seems to be little evidence for shear anisotropy at greater depths. At and beneath the transition zone, 3-D heterogeneity is likely uncorrelated with surface tectonics; as a result, our tectonics-based parameterization is tenuous. Despite this weakness, constraints on the gross average thermochemical and anisotropic structure to ∼1300 km depth can be inferred, which appear to indicate that the compositions of the upper (low Mg# and high Mg/Si ratio) and lower mantle (high Mg# and low Mg/Si ratio) might possibly be distinct.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...