ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-07-03
    Description: It is well known that neural activity exhibits variability, in the sense that identical sensory stimuli produce different responses, but it has been difficult to determine what this variability means. Is it noise, or does it carry important information-about, for example, the internal state of the organism? Here we address this issue from the bottom up, by asking whether small perturbations to activity in cortical networks are amplified. Based on in vivo whole-cell patch-clamp recordings in rat barrel cortex, we find that a perturbation consisting of a single extra spike in one neuron produces approximately 28 additional spikes in its postsynaptic targets. We also show, using simultaneous intra- and extracellular recordings, that a single spike in a neuron produces a detectable increase in firing rate in the local network. Theoretical analysis indicates that this amplification leads to intrinsic, stimulus-independent variations in membrane potential of the order of +/-2.2-4.5 mV-variations that are pure noise, and so carry no information at all. Therefore, for the brain to perform reliable computations, it must either use a rate code, or generate very large, fast depolarizing events, such as those proposed by the theory of synfire chains. However, in our in vivo recordings, we found that such events were very rare. Our findings are thus consistent with the idea that cortex is likely to use primarily a rate code.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898896/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898896/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉London, Michael -- Roth, Arnd -- Beeren, Lisa -- Hausser, Michael -- Latham, Peter E -- G0500244/Medical Research Council/United Kingdom -- R01 MH062447-08/MH/NIMH NIH HHS/ -- R01 MH62447/MH/NIMH NIH HHS/ -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Jul 1;466(7302):123-7. doi: 10.1038/nature09086.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20596024" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/physiology ; Animals ; Artifacts ; Cerebral Cortex/cytology/*physiology ; *Models, Neurological ; Neurons/metabolism ; Patch-Clamp Techniques ; Probability ; Rats ; Rats, Sprague-Dawley ; Stochastic Processes
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...